A recursive sequence (2)

Algebra Level 4

{ a 1 = 2017 a 2 = 2117 a n + 2 = 2 5 a n + 1 + 3 5 a n , n 1. \large \begin{cases} a_1=2017\\ a_2=2117\\ a_{n+2}=\frac{2}{5}a_{n+1}+\frac{3}{5}a_n, \quad n\ge 1. \end{cases}

Let { a n } \left \{a_n\right \} be a sequence satisfying the above condition. Find lim n a n \displaystyle \lim_{n \to \infty } a_n .


The answer is 2079.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Re-index the sequence as { a 0 = 2017 a 1 = 2117 a n + 2 = 2 5 a n + 1 + 3 5 a n , n 0 \begin{cases} a_{\color{#D61F06}0} = 2017 \\ a_{\color{#D61F06}1} = 2117 \\ a_{n+2} = \frac 25 a_{n+1} + \frac 35 a_n, \quad n \ge {\color{#D61F06}0} \end{cases}

The characteristic of the linear recurrence relation a n + 2 = 2 5 a n + 1 + 3 5 a n a_{n+2} = \frac 25 a_{n+1} + \frac 35 a_n is as follows:

r 2 2 5 r 3 5 = 0 5 r 2 2 r 3 = 0 ( 5 r + 3 ) ( r 1 ) = 0 r = 3 5 , 1 \begin{aligned} r^2 - \frac 25 r - \frac 35 & = 0 \\ 5r^2 - 2 r - 3 & = 0 \\ (5r+3)(r-1) & = 0 \\ \implies r & = - \frac 35, \ 1 \end{aligned}

a n = c 1 + c 2 ( 3 5 ) n a 0 = c 1 + c 2 = 2017 a 1 = c 1 3 5 c 2 = 2117 c 1 = 2079.5 c 2 = 62.5 a n = 2079.5 + ( 1 ) n + 1 62.5 × 0. 6 n \begin{aligned} \implies a_n & = c_1 + c_2 \left(-\frac 35\right)^n \\ a_0 & = c_1 + c_2 = 2017 \\ a_1 & = c_1 - \frac 35 c_2 = 2117 \\ \implies c_1 & = 2079.5 \\ c_2 & = -62.5 \\ \implies a_n & = 2079.5 + (-1)^{n+1} 62.5 \times 0.6^n \end{aligned}

Therefore, lim n a n = lim n ( 2079.5 + ( 1 ) n + 1 62.5 × 0. 6 n ) = 2079.5 \displaystyle \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(2079.5 + (-1)^{n+1} 62.5 \times 0.6^n\right) = \boxed{2079.5}

Expected this brilliant solution from the Brilliant one @chew-seong sir

Aakash Khandelwal - 4 years, 1 month ago

Log in to reply

Thanks. No upvote?

Chew-Seong Cheong - 4 years, 1 month ago
Chan Lye Lee
May 5, 2017

From the condition, a k + 2 a k + 1 = 3 5 ( a k + 1 a k ) a_{k+2}-a_{k+1}=\frac{-3}{5}\left(a_{k+1}-a_k\right) . Hence { a k + 2 a k + 1 } \{a_{k+2}-a_{k+1}\} is a geometry progression. Now a k + 2 a k + 1 = ( 3 5 ) k ( a 2 a 1 ) = 100 ( 3 5 ) k a_{k+2}-a_{k+1}=\left(\frac{-3}{5}\right)^k\left(a_{2}-a_1\right) =100\left(\frac{-3}{5}\right)^k . Take the summation both sides from k = 1 k=1 to k = n k=n , we obtain a n + 2 a 2 = 100 ( 3 5 + ( 3 5 ) 2 + ( 3 5 ) 3 + + ( 3 5 ) n ) a_{n+2}-a_2 = 100\left( \frac{-3}{5} + \left(\frac{-3}{5}\right)^2+\left(\frac{-3}{5}\right)^3 +\ldots+ \left(\frac{-3}{5}\right)^n \right) .

Now lim n a n = lim n a n + 2 = a 2 + 100 ( 3 5 1 ( 3 5 ) ) = 2079.5 \displaystyle \lim_{n \to \infty } a_n = \lim_{n \to \infty } a_{n+2}=a_2 + 100\left(\frac{\frac{-3}{5} }{1-\left(\frac{-3}{5}\right)}\right) =\boxed{2079.5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...