A recursive sequence

Algebra Level 3

{ a 1 = 1 a n + 1 = 2 a n + n 2 n , n 1 \begin{cases} \begin{aligned}a_1&=1\\ a_{n+1}&=2a_{n}+n2^n, \quad n\ge 1 \end{aligned}\end{cases}

Let { a k } \left \{a_k\right \} be a sequence satisfying the above condition. Find the minimum n n such that a n > 2 100 a_n > 2^{100} .


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chan Lye Lee
May 3, 2017

Let b k = a k 2 k b_k=\frac{a_k}{2^k} . Then b k + 1 = a k + 1 2 k + 1 = 2 a k + k 2 k 2 k + 1 = b k + k 2 b_{k+1}=\frac{a_{k+1}}{2^{k+1}}=\frac{2a_{k}+k2^k}{2^{k+1}}=b_k+\frac{k}{2} . Take the summation from k = 1 k=1 to k = n k=n for both sides, wee obtain b n + 1 = b 1 + n ( n + 1 ) 4 b_{n+1}=b_1+\frac{n(n+1)}{4} . Since b 1 = 1 2 b_1=\frac{1}{2} , we have a n + 1 2 n + 1 = b n + 1 = 1 2 + n ( n + 1 ) 4 \frac{a_{n+1}}{2^{n+1}}=b_{n+1}=\frac{1}{2}+\frac{n(n+1)}{4} . After some manipulation, a n = 2 n 2 ( n 2 n + 2 ) a_n=2^{n-2}\left(n^2-n+2\right) .

Note that 4096 = 2 12 < 8 9 2 = 7921 < 2 13 = 8192 4096=2^{12}<89^2=7921<2^{13}=8192

When n = 89 n=89 , a n = 2 87 ( 8 9 2 89 + 2 ) < 2 87 ( 8 9 2 ) < 2 87 2 13 = 2 100 a_n=2^{87}\left(89^2-89+2\right)< 2^{87}\left(89^2\right)< 2^{87}2^{13}=2^{100} .

When n = 90 n=90 , a n = 2 88 ( 9 0 2 90 + 2 ) = 2 88 ( 8 9 2 + 2 ( 89 ) + 1 90 + 2 ) = 2 88 ( 8 9 2 ) > 2 88 2 12 = 2 100 a_n=2^{88}\left(90^2-90+2\right)=2^{88}\left(89^2+2(89)+1-90+2\right)=2^{88}\left(89^2\right)>2^{88}2^{12}=2^{100} .

So the answer is 90 \boxed{90} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...