A roaring paper tiger (My sixth integral problem)

Calculus Level 5

1 1 x 3 + 3 x 2 + 27 x 3 + 27 x 2 + 729 x 3 + 243 x 2 + 19683 x 3 + 2182 x 2 + 3 3 3 3 d x \displaystyle \int_{-1}^{1} \sqrt[3]{x^3 + 3x^2 + \sqrt[3]{27x^3 + 27x^2 + \sqrt[3]{729x^3 + 243x^2 +\sqrt[3]{19683x^3 + 2182 x^2 +\cdots} }}}dx

Evaluate the integral above.

Clarification:

  • The coefficient of x 3 x^3 is given by 3 3 n 3 3^{3n-3} , where n n is a positive integer.

  • The coefficient of x 2 x^2 is given by 3 2 n 1 3^{2n-1} , where n n is a positive integer.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Feb 6, 2016

x + 1 = ( x + 1 ) 3 3 x+1=\sqrt[3]{(x+1)^3} = x 3 + 3 x 2 + 3 x + 1 3 =\sqrt[3]{x^3+3x^2+\color{#D61F06}{3x+1}} = x 3 + 3 x 2 + ( 3 x + 1 ) 3 3 3 =\sqrt[3]{x^3+3x^2+\sqrt[3]{\color{#D61F06}{(3x+1)^3}}} = x 3 + 3 x 2 + 27 x 3 + 27 x 2 + 9 x + 1 3 3 =\sqrt[3]{x^3+3x^2+\sqrt[3]{27x^3+27x^2+\color{#20A900}{9x+1}}} = x 3 + 3 x 2 + 27 x 3 + 27 x 2 + ( 9 x + 1 ) 3 3 3 3 =\sqrt[3]{x^3+3x^2+\sqrt[3]{27x^3+27x^2+\sqrt[3]{\color{#20A900}{(9x+1)^3}}}} = x 3 + 3 x 2 + 27 x 3 + 27 x 2 + 729 x 3 + 243 x 2 + 27 x + 1 3 3 3 =\sqrt[3]{x^3+3x^2+\sqrt[3]{27x^3+27x^2+\sqrt[3]{729x^3+243x^2+\color{#3D99F6}{27x+1}}}} = =\cdots which is what required in the question.
Hence, 1 1 ( x + 1 ) d x = 0 + 2 = 2 \Large \int_{-1}^1( x +1)dx= 0+2=\boxed{\color{#007fff}{2}}

Lovely solution! =D =D =D

Pi Han Goh - 5 years, 4 months ago

Log in to reply

T h a n k s ! ! \Large\color{#007fff}{\mathcal{Thanks!!}}

Rishabh Jain - 5 years, 4 months ago

correct me if i'm wrong but in line 5 did you mean

x 3 + 3 x 2 + 27 x 3 + 27 x 2 + ( 9 x + 1 ) 3 3 3 3 \sqrt [ 3 ]{ x^{ 3 }+3x^{ 2 }+\sqrt [ 3 ]{ 27x^{ 3 }+27x^{ 2 }+\sqrt [ 3 ]{ (9x+1)^3 } } }

Hamza A - 5 years, 4 months ago

Log in to reply

Right...edited... :)

Rishabh Jain - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...