A second order RC circuit frequency response

The above figure shows a circuit made with two identical resistors, R = 1 k Ω R = 1 \text{ k}\Omega and two identical capacitors C = 1 μ F C = 1 \ \mu \text{F} . The input voltage is V i n = A cos ω t V V_{in} = A \cos \omega t \text{ V} . Find the value of ω \omega (in rad/sec) at which the amplitude of the output voltage V o u t V_{out} is maximum, for a given fixed input amplitude A A .


The answer is 1000.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Karan Chatrath
Mar 6, 2019

Not an expert at Latex, neither am one in circuit analysis. My approach involves the use of the concept of transfer functions.

Great analysis. Thanks for sharing it.

Hosam Hajjir - 2 years, 3 months ago

Let Z 1 = 1 j ω C ( R + 1 j ω C ) Z_1 = \frac 1{j\omega C} \bigg|\bigg| \left(R+\frac 1{j\omega C}\right) , the C-C-R π \pi circuit on the right. Then the impedance of the whole RC circuit is Z = R + Z 1 Z = R + Z_1 . And we have:

V o u t V i n = Z 1 Z × R R + 1 j ω C = Z 1 R + Z 1 × j ω C R 1 + j ω C R See note: Z 1 = 1 + j ω C R 2 j ω C R ω 2 C 2 R = 1 + j ω C R 2 j ω C R ω 2 C 2 R R + 1 + j ω C R 2 j ω C R ω 2 C 2 R × j ω C R 1 + j ω C R = 1 + j ω C R 1 ω 2 C 2 R 2 + j ω C R ( 1 + 2 R ) × j ω C R 1 + j ω C R = 1 1 + 2 R + j ( ω C R 1 ω C R ) \begin{aligned} \frac {V_{out}}{V_{in}} & = \frac {Z_1}{Z} \times \frac {R}{R+\frac 1{j\omega C}} \\ & = \frac {\color{#3D99F6}Z_1}{R + \color{#3D99F6} Z_1} \times \frac {j\omega CR}{1+j\omega CR} & \small \color{#3D99F6} \text{See note: } Z_1 = \frac {1+j\omega CR}{2j\omega CR - \omega^2 C^2R} \\ & = \frac {\color{#3D99F6}\frac {1+j\omega CR}{2j\omega CR - \omega^2 C^2R}}{R + \color{#3D99F6} \frac {1+j\omega CR}{2j\omega CR - \omega^2 C^2R}} \times \frac {j\omega CR}{1+j\omega CR} \\ & = \frac {1+j\omega CR}{1-\omega^2 C^2R^2 +j\omega CR(1+2R)} \times \frac {j\omega CR}{1+j\omega CR} \\ & = \frac 1{1+2R + j\left(\omega CR- \frac 1{\omega CR}\right)} \end{aligned}

For the same V i n |V_{in}| , V o u t |V_{out}| is maximum , when 1 + 2 R + j ( ω C R 1 ω C R ) \left|1+2R + j\left(\omega CR- \dfrac 1{\omega CR}\right)\right| is minimum or

ω C R 1 ω C R = 0 ω 2 C 2 R 2 = 1 ω C R = 1 ω = 1 C R = 1 1 0 6 × 1 0 3 = 1000 rad/s \begin{aligned} \omega CR - \dfrac 1{\omega CR} & = 0 \\ \omega^2C^2R^2 & = 1 \\ \omega CR & = 1 \\ \implies \omega & = \frac 1{CR} = \frac 1{10^{-6}\times 10^3} = \boxed{1000} \text{ rad/s} \end{aligned}


Note:

Z 1 = 1 j ω C ( R + 1 j ω C ) = 1 j ω C ( R + 1 j ω C ) 1 j ω C + R + 1 j ω C = 1 + j ω C R 2 j ω C R ω 2 C 2 R \small \begin{aligned} Z_1 & = \frac 1{j\omega C} \bigg| \bigg| \left(R+\frac 1{j\omega C} \right) = \frac {\frac 1{j\omega C} \left(R+\frac 1{j\omega C} \right)}{\frac 1{j\omega C} + R+\frac 1{j\omega C}} = \frac {1+j\omega CR}{2j\omega CR - \omega^2 C^2R} \end{aligned}

Excellent analysis. Thanks for sharing this explanation.

Hosam Hajjir - 2 years, 3 months ago

Log in to reply

You are welcome. Great problem.

Chew-Seong Cheong - 2 years, 3 months ago
Steven Chase
Mar 4, 2019

Sweep over the angular frequency and plot the gain at each value of ω \omega .

Z C = j ω C Z 1 = R + Z C Z 2 = Z 1 Z C Z 1 + Z C V 1 = V i n Z 2 R + Z 2 V o u t = V 1 R R + Z C Gain = V o u t V i n ZC = - \frac{j}{\omega C} \\ Z_1 = R + Z_C \\ Z_2 = \frac{Z_1 \, Z_C}{Z_1 + Z_C} \\ V_1 = V_{in} \frac{Z_2}{R + Z_2} \\ V_{out} = V_1 \frac{R}{R + Z_C} \\ \text{Gain} = \Big| \frac{V_{out}}{V_{in}} \Big|

The gain has a maximum value of 1 3 \frac{1}{3} at ω = 1000 rad/s \omega = 1000 \text{rad/s} . This is not really a low-pass filter since it rejects DC. I will therefore call it a band-pass filter.

A great solution. Thanks for sharing it.

Hosam Hajjir - 2 years, 3 months ago

You're welcome, and thanks for the problem. May I use the graphic for a followup problem?

Steven Chase - 2 years, 3 months ago

Absolutely.

Hosam Hajjir - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...