Geometry -- 2

Geometry Level 3

Suppose sin ( π 4 + θ ) = 1 3 \sin \left(\frac {\pi}{4} + \theta\right) = \frac 13 ; then what is 9 sin ( 2 θ ) 9\sin {(2 \theta)} equal to?


The answer is -7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 25, 2019

cos ( π 2 + 2 θ ) = 1 2 sin 2 ( π 4 + θ ) = 1 2 9 = 7 9 Since cos ( π 2 x ) = sin x sin ( 2 θ ) = 7 9 and sin ( x ) = sin x sin ( 2 θ ) = 7 9 sin ( 2 θ ) = 7 9 \begin{aligned} \cos \left(\frac \pi 2 + 2\theta \right) & = 1- 2\sin^2 \left(\frac \pi 4 + \theta \right) \\ & = 1 - \frac 29 = \frac 79 & \small \color{#3D99F6} \text{Since }\cos \left(\frac \pi 2 - x\right) = \sin x \\ \sin (-2\theta) & = \frac 79 & \small \color{#3D99F6} \text{and }\sin (-x) = - \sin x \\ - \sin (2\theta) & = \frac 79 \\ \implies \sin (2\theta) & = \boxed{-\frac 79} \end{aligned}

Kevin Xu
Aug 25, 2019

sin 2 θ = cos ( π 2 + θ ) \sin {2\theta} = -\cos {(\frac {\pi}{2} + \theta)} \quad [Since sin ( π 4 + 2 θ ) = 1 3 \sin {(\frac {\pi}{4} + 2\theta)} = \frac 13 which is smaller than sin π 4 \sin {\frac {\pi}{4}} meaning the vector is in the Second Quadrant and has a negative cosine value] \\ \\

cos ( π 2 + θ ) = cos [ 2 ( π 4 + θ ] = 2 sin 2 π 4 + θ 1 = 2 9 1 = 7 9 -\cos {(\frac {\pi}{2} + \theta)} = -\cos {[2 (\frac {\pi}{4} + \theta]} = 2 \sin ^2 {\frac {\pi}{4} + \theta} - 1 = \frac 29 - 1 = - \frac 79 \\ \\

9 sin ( 2 θ ) = 7 9\sin {(2 \theta)} = -7

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...