A sequence of polynomials is defined as follows: Find the last two digits of
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The trick is to express each term in terms of 2 raised to the power of a power of 2 , e.g. 2 5 6 = 2 2 3
f 1 0 0 ( 2 ) = = = = = = = = 2 2 1 0 0 − 9 9 − 1 + f 9 9 ( 2 2 1 0 0 − 9 9 ) 2 2 1 0 0 − 9 8 − 1 + 2 2 1 0 0 − 9 8 − 2 + f 9 8 ( 2 2 1 0 0 − 9 8 ) 2 2 1 0 0 − 9 7 − 1 + 2 2 1 0 0 − 9 7 − 2 + 2 2 1 0 0 − 9 7 − 3 + f 9 7 ( 2 2 1 0 0 − 9 7 ) … 2 2 1 0 0 − 1 − 1 + 2 2 1 0 0 − 1 − 2 + 2 2 1 0 0 − 1 − 3 + … + 2 2 1 0 0 − 1 − 9 9 + f 1 ( 2 2 1 0 0 − 1 ) 1 + k = 0 ∑ 9 8 2 2 k 1 + 2 2 0 + 2 2 1 + k = 2 ∑ 9 8 2 2 k 7 + k = 2 ∑ 9 8 2 2 k
Notice that 2 2 4 = 1 6 , since we only consider the last two digits, that is, modulo 1 0 0 , we have 1 6 2 ≡ 5 6 , 5 6 2 ≡ 3 6 , 3 6 2 ≡ 9 6 ≡ − 4 , ( − 4 ) 2 ≡ 1 6 which indicates the last two digits repeats after a cycle of 4
So for k = 2 , 3 , 4 , … , 9 8 , we consider splitting them into sets 4 sets as such
S 1 S 2 S 3 S 4 = = = = { 2 , 6 , 1 0 , 1 4 , … 9 4 , 9 8 } ⇒ a total of 2 5 elements { 3 , 7 , 1 1 , 1 5 , … 9 5 } ⇒ a total of 2 4 elements { 4 , 8 , 1 2 , 1 6 , … 9 6 } ⇒ a total of 2 4 elements { 5 , 9 , 1 3 , 1 7 , … 9 7 } ⇒ a total of 2 4 elements
Continue from above
f 1 0 0 ( 2 ) ≡ ≡ ≡ ≡ 7 + k ∈ S 1 ∑ 2 2 k + k ∈ S 2 ∑ 2 2 k + k ∈ S 3 ∑ 2 2 k + k ∈ S 4 ∑ 2 2 k 7 + 2 5 ( 1 6 ) + 2 4 ( 5 6 ) + 2 4 ( 3 6 ) + 2 4 ( − 4 ) 7 + 2 4 ( 1 6 + 5 6 + 3 6 − 4 ) + 1 6 1 9