A sequence of polynomials

A sequence of polynomials is defined as follows: f 1 ( x ) = 1 ; f k + 1 ( x ) = f k ( x 2 ) + x , k 1 f_1(x)=1; \ f_{k+1}(x)=f_k(x^2)+x, \ k\geq 1 Find the last two digits of f 100 ( 2 ) . f_{100}(2).


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Mar 3, 2014

The trick is to express each term in terms of 2 2 raised to the power of a power of 2 2 , e.g. 256 = 2 2 3 256 = 2^{2^3}

f 100 ( 2 ) = 2 2 100 99 1 + f 99 ( 2 2 100 99 ) = 2 2 100 98 1 + 2 2 100 98 2 + f 98 ( 2 2 100 98 ) = 2 2 100 97 1 + 2 2 100 97 2 + 2 2 100 97 3 + f 97 ( 2 2 100 97 ) = = 2 2 100 1 1 + 2 2 100 1 2 + 2 2 100 1 3 + + 2 2 100 1 99 + f 1 ( 2 2 100 1 ) = 1 + k = 0 98 2 2 k = 1 + 2 2 0 + 2 2 1 + k = 2 98 2 2 k = 7 + k = 2 98 2 2 k \begin{aligned} \LARGE f_{100} (2) & = & 2^{2^{100-99-1}} + f_{99} \left ( 2^{2^{100-99}} \right ) \\ \LARGE & = & 2^{2^{100-98-1}} + 2^{2^{100-98-2}} + f_{98} \left ( 2^{2^{100-98}} \right ) \\ \LARGE & = & 2^{2^{100-97-1}} + 2^{2^{100-97-2}} + 2^{2^{100-97-3}} + f_{97} \left ( 2^{2^{100-97}} \right ) \\ \LARGE & = & \ldots \\ \LARGE & = & 2^{2^{100-1-1}} + 2^{2^{100-1-2}} + 2^{2^{100-1-3}} + \ldots + 2^{2^{100-1-99}} + f_{1} \left ( 2^{2^{100-1}} \right ) \\ \LARGE & = & 1 + \displaystyle \sum_{k=0}^{98} 2^{2^k} \\ \LARGE & = & 1 + 2^{2^0} + 2^{2^1} + \displaystyle \sum_{k=2}^{98} 2^{2^k} \\ \LARGE & = & 7 + \displaystyle \sum_{k=2}^{98} 2^{2^k} \\ \end{aligned}

Notice that 2 2 4 = 16 2^{2^4} = 16 , since we only consider the last two digits, that is, modulo 100 100 , we have 1 6 2 56 16^2 \equiv 56 , 5 6 2 36 56^2 \equiv 36 , 3 6 2 96 4 36^2 \equiv 96 \equiv -4 , ( 4 ) 2 16 (-4)^2 \equiv 16 which indicates the last two digits repeats after a cycle of 4 4

So for k = 2 , 3 , 4 , , 98 k = 2,3,4, \ldots, 98 , we consider splitting them into sets 4 sets as such

S 1 = { 2 , 6 , 10 , 14 , 94 , 98 } a total of 25 elements S 2 = { 3 , 7 , 11 , 15 , 95 } a total of 24 elements S 3 = { 4 , 8 , 12 , 16 , 96 } a total of 24 elements S 4 = { 5 , 9 , 13 , 17 , 97 } a total of 24 elements \begin{aligned} S_1 & = & \{ 2, 6, 10, 14, \ldots 94, 98 \} \Rightarrow \text{ a total of } 25 \text { elements} \\ S_2 & = & \{ 3, 7, 11, 15, \ldots 95 \} \Rightarrow \text{ a total of } 24 \text { elements} \\ S_3 & = & \{ 4, 8, 12, 16, \ldots 96 \} \Rightarrow \text{ a total of } 24 \text { elements} \\ S_4 & = & \{ 5, 9, 13, 17, \ldots 97 \} \Rightarrow \text{ a total of } 24 \text { elements} \\ \end{aligned}

Continue from above

f 100 ( 2 ) 7 + k S 1 2 2 k + k S 2 2 2 k + k S 3 2 2 k + k S 4 2 2 k 7 + 25 ( 16 ) + 24 ( 56 ) + 24 ( 36 ) + 24 ( 4 ) 7 + 24 ( 16 + 56 + 36 4 ) + 16 19 \begin{aligned} \LARGE f_{100} (2) & \equiv & 7 + \sum_{k \in S_1} 2^{2^k} + \sum_{k \in S_2} 2^{2^k} + \sum_{k \in S_3} 2^{2^k} + \sum_{k \in S_4} 2^{2^k} \\ \LARGE & \equiv & 7 + 25(16) + 24(56) + 24(36) + 24(-4) \\ \LARGE & \equiv & 7 + 24(16 + 56 + 36 - 4) + 16 \\ \LARGE & \equiv & \boxed{19} \\ \end{aligned}

Exactly my way. Although I took some help from my computer to confirm my answer

Ishant Goyal - 7 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...