A Series of Logarithms

Algebra Level 2

If x = 2015 ! x = 2015! then evaluate

1 log 2 x + 1 log 3 x + 1 log 4 x + + 1 log 2015 x . \frac { 1 }{ \log _{ 2 }{ x } } +\frac { 1 }{ \log _{ 3 }{ x } } +\frac { 1 }{ \log _{ 4 }{ x } } + \ldots + \frac { 1 }{ \log _{ 2015 }{ x } }.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dominick Hing
Oct 3, 2014

Rewrite using change of base property: since log a b = log b log a \log _{ a }{ b } =\frac { \log { b } }{ \log { a } } , we can conclude that 1 log a b = log b a \frac { 1 }{ \log _{ a }{ b } } =\log _{ b }{ a }

Thus we can rewrite the entire expression as log x 2 + log x 3... log x 2015 \log _{ x }{ 2 } +\log _{ x }{ 3 } ...\log _{ x }{ 2015 } .

By the sum of logs property, log x 2 + log x 3... log x 2015 = log x ( 2 × 3 × 4...2015 ) = log x ( 2015 ! ) \log _{ x }{ 2 } +\log _{ x }{ 3 } ...\log _{ x }{ 2015 } =\log _{ x }{ (2\times 3\times 4...2015)=\log _{ x }{ (2015!) } }

Because x = 2015 ! x = 2015! , log x ( 2015 ! ) = 1 \log_{x}{(2015!)} = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...