A Serious Series

Algebra Level 3

2 2 2020 + 3 2 2019 + 4 2 2018 + + 2021 2 = ? \frac 2{2^{2020}}+\frac 3{2^{2019}}+\frac 4{2^{2018}}+\cdots+\frac {2021}{2} =\, ?


The answer is 2020.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Nov 4, 2020

The sum can be expressed as k = 2 2021 k 2 2022 k = 1 2 2022 k = 2 2021 k 2 k \sum_{k=2}^{2021} \dfrac k{2^{2022 - k}} = \dfrac1{2^{2022}} \sum_{k=2}^{2021} k \cdot 2^k By mathematical induction , we can get k = 2 n k 2 k = ( n 1 ) 2 n + 1 \sum \limits_{k=2}^n k \cdot 2^k = (n-1) 2^{n+1} . Hence, the sum in question is 2021 1 2 2022 2 2022 = 2020 . \dfrac{2021 - 1}{2^{2022}} \cdot 2^{2022} = \boxed{2020} .

Nice solution :)

Hypergeo H. - 7 months, 1 week ago

S = 2 2 2020 + 3 2 2019 + 4 2 2018 + + 2021 2 = 2 2 + 3 2 2 + 4 2 3 + + 2021 2 2020 2 2021 = 1 + 2 x + 3 x 2 + 4 x 3 + + 2021 x 2020 2 2021 x = 2 1 2 2021 = d d x [ x + x 2 + x 3 + x 4 + + x 2021 2 2021 ] x = 2 1 2 2021 1 2 2021 = d d x [ x 2022 x 2 2021 ( x 1 ) ] x = 2 1 2 2021 = ( 2022 x 2021 1 ) ( x 1 ) x 2022 + x 2 2021 ( x 1 ) 2 x = 2 1 2 2021 = 2 2021 ( 2022 2 ) 1 + 2 2 2021 1 2 2021 = 2020 \begin{aligned} S & = \frac 2{2^{2020}} + \frac 3{2^{2019}} + \frac 4{2^{2018}} + \cdots + \frac {2021}2 \\ & = \frac {2\cdot 2 + 3 \cdot 2^2 + 4 \cdot 2^3 + \cdots + 2021 \cdot 2^{2020}}{2^{2021}} \\ & = \frac {1 + 2x + 3x^2 + 4x^3 + \cdots + 2021 x^{2020}}{2^{2021}} \bigg|_{x = 2} - \frac 1{2^{2021}} \\ & = \frac d{dx} \left[\frac {x + x^2 + x^3 + x^4 + \cdots + x^{2021}}{2^{2021}} \right]_{x = 2} - \frac 1{2^{2021}} - \frac 1{2^{2021}} \\ & = \frac d{dx} \left[\frac {x^{2022}-x}{2^{2021}(x-1)} \right]_{x = 2} - \frac 1{2^{2021}} \\ & = \frac {(2022x^{2021}-1)(x-1) - x^{2022}+x}{2^{2021}(x-1)^2} \bigg|_{x=2} - \frac 1{2^{2021}} \\ & = \frac {2^{2021}(2022-2)-1+2}{2^{2021}} - \frac 1{2^{2021}} \\ & = \boxed{2020} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...