A seven and a lot of twos, nines and sixes

A number:

7. 296 7.\overline{296}

can be written in form of m n \frac{m}{n} ( m , n m, n positive coprime integers). Find m n m - n

Notes:

7. 296 = 7.296296296 7.\overline{296} = 7.296296296\cdots


The answer is 170.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Angela Fajardo
Mar 27, 2016

Let:

x = 7. 296 x=7.\overline { 296 }

Multiply both sides by 1000 1000 :

1000 x = 7296. 296 1000x=7296.\overline { 296 }

Subtract by x x in order to remove the . 296 .\overline { 296 } :

1000 x = 7296. 296 x = 7. 296 999 x = 7289 1000x=7296.\overline { 296 } \\ \underline { -\quad \quad x=7.\overline { 296 } } \\ \quad 999x=7289

999 x 999 = 7289 999 \Large \frac { 999x }{ 999 } =\frac { 7289 }{ 999 }

x = 7289 999 \Large x=\frac { 7289 }{ 999 }

In lowest terms:

7289 999 = 197 27 = m n \Large \frac { 7289 }{ 999 } =\frac { 197 }{ 27 } =\frac { m }{ n }

m n m-n

197 27 = 170 197-27=\boxed { 170 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...