Let x , y , z be reals such that x + 2 y + 3 z = 0 and x y = 4 .
Find the value of ( x + y + z ) 2 + x y + ( y + z ) 2 + z 2 + 2 x z + z y .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Given that x + 2 y + 3 z = 0 ⟹ x = − 2 y − 3 z , also that x y = 4 . Now we have:
X = ( x + y + z ) 2 + x y + ( y + z ) 2 + z 2 + 2 z x + y z = ( − 2 y − 3 z + y + z ) 2 + 4 + ( y + z ) 2 + z 2 + 2 z ( − 2 y − 3 z ) + y z = ( − y − 2 z ) 2 + 4 + y 2 + 2 y z + z 2 + z 2 − 4 y z − 6 z 2 + y z = y 2 + 4 y z + 4 z 2 + 4 + y 2 + 2 y z + z 2 + z 2 − 4 y z − 6 z 2 + y z = 2 y 2 + 3 y z + 4 = y ( 2 y + 3 z ) + 4 = y ( − x ) + 4 = − x y + 4 = − 4 + 4 = 0
Problem Loading...
Note Loading...
Set Loading...
( x + y + z ) 2 + x y + ( y + z ) 2 + z 2 + 2 x z + z y
consider the x y and one x z term and group them
( x + y + z ) 2 + x ( y + z ) + ( y + z ) 2 + z 2 + x z + z y
group second and third term
( x + y + z ) 2 + ( y + z ) ( x + y + z ) + z 2 + x z + z y
( x + y + z ) 2 + ( y + z ) ( x + y + z ) + z ( x + y + z )
factorise again to get
( x + y + z ) ( x + 2 y + 3 z )
this is simply zero!! ∫ l o g r x d x