An algebra problem by Rohith M.Athreya

Algebra Level 2

Let x , y , z x,y,z be reals such that x + 2 y + 3 z = 0 x+2y+3z=0 and x y = 4 xy=4 .

Find the value of ( x + y + z ) 2 + x y + ( y + z ) 2 + z 2 + 2 x z + z y (x+y+z)^{2} +xy+(y+z)^{2} +z^{2}+2xz+zy .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohith M.Athreya
Sep 29, 2016

( x + y + z ) 2 + x y + ( y + z ) 2 + z 2 + 2 x z + z y (x+y+z)^{2} +xy+(y+z)^{2} +z^{2}+2xz+zy

consider the x y xy and one x z xz term and group them

( x + y + z ) 2 + x ( y + z ) + ( y + z ) 2 + z 2 + x z + z y (x+y+z)^{2} +x(y+z)+(y+z)^{2} +z^{2}+xz+zy

group second and third term

( x + y + z ) 2 + ( y + z ) ( x + y + z ) + z 2 + x z + z y (x+y+z)^{2} +(y+z)(x+y+z) +z^{2}+xz+zy

( x + y + z ) 2 + ( y + z ) ( x + y + z ) + z ( x + y + z ) (x+y+z)^{2} +(y+z)(x+y+z) +z(x+y+z)

factorise again to get

( x + y + z ) ( x + 2 y + 3 z ) (x+y+z)(x+2y+3z)

this is simply zero!! l o g r x d x \int log rx \, dx

Chew-Seong Cheong
Sep 30, 2016

Given that x + 2 y + 3 z = 0 x+2y+3z = 0 x = 2 y 3 z \implies \color{#3D99F6}{x = -2y - 3z} , also that x y = 4 \color{#D61F06}{xy=4} . Now we have:

X = ( x + y + z ) 2 + x y + ( y + z ) 2 + z 2 + 2 z x + y z = ( 2 y 3 z + y + z ) 2 + 4 + ( y + z ) 2 + z 2 + 2 z ( 2 y 3 z ) + y z = ( y 2 z ) 2 + 4 + y 2 + 2 y z + z 2 + z 2 4 y z 6 z 2 + y z = y 2 + 4 y z + 4 z 2 + 4 + y 2 + 2 y z + z 2 + z 2 4 y z 6 z 2 + y z = 2 y 2 + 3 y z + 4 = y ( 2 y + 3 z ) + 4 = y ( x ) + 4 = x y + 4 = 4 + 4 = 0 \begin{aligned} X & = (\color{#3D99F6}{x}+y+z)^2 +\color{#D61F06}{xy}+(y+z)^2 + z^2 +2z\color{#3D99F6}{x} + yz \\ & = (\color{#3D99F6}{-2y-3z}+y+z)^2 +\color{#D61F06}{4}+(y+z)^2 + z^2 +2z(\color{#3D99F6}{-2y-3z}) + yz \\ & = (-y-2z)^2 +4+y^2+2yz+z^2 + z^2 -4yz-6z^2 + yz \\ & = y^2+4yz + 4z^2 +4+y^2+2yz+z^2 + z^2 -4yz-6z^2 + yz \\ & = 2y^2 + 3yz + 4 \\ & = y(\color{#3D99F6}{2y+3z}) + 4 \\ & = y(\color{#3D99F6}{-x}) + 4 \\ & = -\color{#D61F06}{xy} + 4 \\ & = -\color{#D61F06}{4} + 4 \\ & = \boxed{0} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...