An equation

Algebra Level 4

x 4 2 x 3 + x = 2 ( x 2 x ) \large x^4-2x^3+x=\sqrt{2(x^2-x)}

Find the sum of all real x x that satisfy the above equation.


Source: Selection test for mathematics gifted students at Hanoi Amsterdam High School, Chu Van An High School, and Nguyen Hue High School.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Let a = x 2 x x 4 2 x 3 + x = a 2 x 2 + x = a 2 a a 2 a = 2 a a 4 2 a 3 + a 2 = 2 a a 4 2 a 3 + a 2 2 a = 0 a ( a 2 ) ( a 2 + 1 ) = 0 a = 0 , 2 x 2 x 2 = 0 or x 2 2 x = 0 x = 0 , 1 , 1 , 2 Therefore, the answer is 2 \text{Let }a=x^2-x\\x^4-2x^3+x=a^2-x^2+x=a^2-a\\a^2-a=\sqrt{2a}\\a^4-2a^3+a^2=2a\\a^4-2a^3+a^2-2a=0\\a(a-2)(a^2+1)=0\\a=0,2\\ x^2-x-2=0\quad\text{or}\quad x^2-2x=0\\x=0,-1,1,2\\\text{Therefore, the answer is 2}

Did the same way :)

Jason Chrysoprase - 5 years ago

lol, I just guessed x = 1 , 0 , 1 , 2 x=-1,0,1,2 :D @Jerry Han Jia Tao

Victor Loh - 5 years ago

Log in to reply

LIKE A GOD :D

Son Nguyen - 5 years ago

Yes, there are four real roots -1, 0, 1, and 2.

Chew-Seong Cheong - 5 years ago

Nice solution

Son Nguyen - 5 years ago

Log in to reply

Great problem as well, post more of such problems in the future!

Yeah, your problems are awesome even though i could barely solve any.

Harsh Shrivastava - 5 years ago

Has four root 0 1 -1 2

Kelvin Hong - 5 years ago

Log in to reply

Hope my edited solution has made it clearer.

Chew-Seong Cheong
Jun 10, 2016

x 4 2 x 3 + x = 2 ( x 2 x ) x 4 x 3 x 3 + x 2 x 2 + x = 2 ( x 2 x ) x 2 ( x 2 x ) x ( x 2 x ) ( x 2 x ) = 2 ( x 2 x ) ( x 2 x ) 2 ( x 2 x ) = 2 ( x 2 x ) Let y 2 = x 2 x y 4 y 2 = 2 y y 4 y 2 2 y = 0 y ( y 3 y 2 ) = 0 We note that y = 2 is a root. y ( y 2 ) ( y 2 + 2 y + 1 ) = 0 We note that y 2 + 2 y + 1 = 0 has no real root. \begin{aligned} x^4-2x^3+x & = \sqrt{2(x^2-x)} \\ x^4-x^3-x^3+x^2-x^2+x & = \sqrt{2(x^2-x)} \\ x^2(x^2-x)-x(x^2-x)-(x^2-x) & = \sqrt{2(x^2-x)} \\ (\color{#3D99F6}{x^2-x})^2-(\color{#3D99F6}{x^2-x}) & = \sqrt{2(\color{#3D99F6}{x^2-x})} \quad \quad \small \color{#3D99F6}{\text{Let }y^2 = x^2-x} \\ y^4 -y^2 & = \sqrt{2}y \\ y^4 -y^2 - \sqrt{2}y & = 0 \\ y(\color{#3D99F6}{y^3-y-\sqrt{2}}) & = 0 \quad \quad \small \color{#3D99F6}{\text{We note that }y = \sqrt{2} \text{ is a root.}} \\ y(y-\sqrt{2})(\color{#3D99F6}{y^2+\sqrt{2}y+1}) & = 0 \quad \quad \small \color{#3D99F6}{\text{We note that }y^2+\sqrt{2}y+1 = 0 \text{ has no real root.}} \end{aligned}

{ y = 0 x 2 x = 0 { 0 1 y = 2 x 2 x = 2 { 1 2 \implies \begin{cases} y = 0 & \implies \sqrt{x^2-x} = 0 & \implies \begin{cases} 0 \\ 1 \end{cases} \\ y = \sqrt{2} & \implies x^2-x = 2 & \implies \begin{cases} -1 \\ 2 \end{cases} \end{cases}

Therefore, the sum of roots is 0 + 1 1 + 2 = 2 0+1-1+2 = \boxed{2} .

Nice solution sir, did the same! (+1)!

Rishabh Tiwari - 5 years ago
Nguyễn Hưng
Jun 10, 2016

Vietnam problem ? :-)

Yes,Viet Nam

Son Nguyen - 5 years ago
Dhruv Tyagi
Jun 13, 2016

x 4 2 x 3 + x = 2 ( x 2 x ) x^{4}-2x^{3}+x=\sqrt{2(x^{2}-x)}

On squaring:

x 8 + 4 x 6 + x 2 4 x 7 4 x 4 + 2 x 5 = 2 x 2 2 x x^{8}+4x^{6}+x^{2}-4x^{7}-4x^{4}+2x^{5}=2x^{2}-2x

x 8 4 x 7 + 4 x 6 + 2 x 5 4 x 4 + x 2 2 x 2 + 2 x = 0 x^{8}-4x^{7}+4x^{6}+2x^{5}-4x^{4}+x^{2}-2x^{2}+2x=0

x 8 4 x 7 + 4 x 6 + 2 x 5 4 x 4 x 2 + 2 x = 0 x^{8}-4x^{7}+4x^{6}+2x^{5}-4x^{4}-x^{2}+2x=0

On factorizing:

x ( x + 1 ) ( x 1 ) ( x 2 ) ( x 4 2 x 3 + x 2 + 1 ) = 0 x(x+1)(x-1)(x-2)(x^{4}-2x^{3}+x^{2}+1)=0

Solutions:

x 1 = 0 x_{1} = 0

x 2 = 1 x_{2} = -1

x 3 = 1 x_{3} = 1

x 4 = 2 x_{4} = 2

x 5 = 0.300243 0.624811 i x_{5} = -0.300243 - 0.624811i

Sum of real solutions = 0 1 + 1 + 2 = 2 = 0-1+1+2=\boxed{2}

Try Polynomial Equation Solver on Bing!!!

Mohit Sharma
Jun 10, 2016

4 roots are 0,1,2,-1

Raisingh Mandloi
Jun 11, 2016

Did the same thing.

Fares Tp
Jun 10, 2016

Hi brooh... I just use vieta theorems... is can?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...