An equation with Golden Ratio

Algebra Level 4

x + ϕ x ϕ 3 + x ϕ x + ϕ = 2 \sqrt[3]{\frac{x+\phi }{x-\phi }}+\frac{x-\phi }{x+\phi }=2

If the equation above holds true, find x 6 + 3 x 5 12 x 4 25 x 3 + 64 x 2 + 7 x \sqrt{x^6+3 x^5-12 x^4-25 x^3+64 x^2+7 x} .

Notation: ϕ = 1 + 5 2 \phi = \dfrac {1+\sqrt 5}2 denotes the golden ratio. .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Aug 16, 2020

If we write α = x + φ x φ 3 \alpha = \sqrt[3]{\tfrac{x+\varphi}{x-\varphi}} , then we note that α 1 \alpha \neq 1 and x = α 3 + 1 α 3 1 φ x = \tfrac{\alpha^3 + 1}{\alpha^3 - 1}\varphi . Now α + α 3 = 2 α 4 2 α 3 + 1 = 0 ( α 1 ) ( α 3 α 2 α 1 ) = 0 \begin{aligned} \alpha + \alpha^{-3} & = \; 2 \\ \alpha^4 - 2\alpha^3 + 1 &= \; 0 \\ (\alpha-1)(\alpha^3 - \alpha^2 - \alpha - 1) & = \; 0 \end{aligned} Thus α 3 α 2 α 1 = 0 \alpha^3 - \alpha^2 - \alpha - 1 = 0 , and hence α 3 = α 2 + α + 1 = α 3 1 α 1 2 α 1 = 2 α 3 α 3 1 = α 3 + 1 α 3 1 + 1 = x + φ φ \begin{aligned} \alpha^3 & = \; \alpha^2 + \alpha + 1 \; = \; \frac{\alpha^3 - 1}{\alpha - 1} \\ \frac{2}{\alpha -1} & = \; \frac{2\alpha^3}{\alpha^3 - 1} \; = \; \frac{\alpha^3 + 1}{\alpha^3 - 1} + 1 \; = \; \frac{x + \varphi}{\varphi} \end{aligned} This means that α = 2 φ x + φ + 1 = x + 3 φ x + φ \alpha \; = \; \frac{2\varphi}{x + \varphi} + 1 \; = \; \frac{x + 3\varphi}{x + \varphi} and hence, since α 3 α 2 α 1 = 0 \alpha^3 - \alpha^2 - \alpha - 1 = 0 , ( x + 3 φ ) 3 ( x + 3 φ ) 2 ( x + φ ) ( x + 3 φ ) ( x + φ ) 2 ( x + φ ) 3 = 0 x 3 + 3 φ x 2 φ 2 x 7 φ 3 = 0 ( x 3 x 7 ) + ( 3 x 2 x 14 ) φ = 0 \begin{aligned} (x + 3\varphi)^3 - (x +3\varphi)^2(x + \varphi) - (x +3\varphi)(x + \varphi)^2 - (x + \varphi)^3 &= \; 0 \\ x^3 + 3\varphi x^2 -\varphi^2x - 7\varphi^3 & = \; 0 \\ (x^3 - x - 7) + (3x^2 - x - 14)\varphi & = \; 0 \end{aligned} and so, finally, since φ 2 φ 1 = 0 \varphi^2 - \varphi - 1 = 0 , ( x 3 x 7 ) 2 + ( x 3 x 7 ) ( 3 x 2 x 14 ) ( 3 x 2 x 14 ) 2 = 0 x 6 + 3 x 5 12 x 4 25 x 3 + 64 x 2 + 7 x 49 = 0 \begin{aligned} (x^3 - x - 7)^2 + (x^3 - x- 7)(3x^2 - x - 14) - (3x^2 -x - 14)^2 &= \; 0 \\ x^6 + 3x^5 - 12x^4 - 25x^3 + 64x^2 + 7x - 49 & = \; 0\end{aligned} making the answer 7 \boxed{7} .

James Watson
Aug 14, 2020

Let x + ϕ x ϕ = y \cfrac{x+\phi}{x-\phi}=y .

y 3 + 1 y = 2 y y 3 + 1 = 2 y y 4 3 = 2 y + 1 y 4 = ( 2 y + 1 ) 3 = 8 y 3 12 y 2 + 6 y 1 y 4 8 y 3 + 12 y 2 6 y + 1 = 0 \sqrt[3]{y}+\frac{1}{y}=2 \\ \Longrightarrow y\sqrt[3]{y}+1=2y \\ \Longrightarrow y^{\frac{4}{3}}=2y+1 \\ \Longrightarrow y^4 = (2y+1)^3 = 8y^3-12y^2+6y-1 \\ \Longrightarrow y^4-8y^3+12y^2-6y+1=0

There are 2 2 real roots for this polynomial, those being 1 1 approximately 6.2223 6.2223

We can only solve for x x for the second one, because x + ϕ x ϕ = 1 \frac{x+\phi}{x-\phi}=1 doesn't exist ever. We must try use other root:

x + ϕ x ϕ = 6.2223 \cfrac{x+\phi}{x-\phi} = 6.2223\dots x + ϕ = x 6.2223 ϕ 6.2223 x+\phi = x\cdot 6.2223\dots - \phi \cdot 6.2223\dots x ( 1 6.2223 ) = ϕ ( 6.2223 + 1 ) x(1-6.2223\dots) = -\phi(6.2223\dots+1) x = ϕ ( 6.2223 + 1 ) 1 6.2223 = 2.2377 x = \boxed{\frac{-\phi(6.2223\dots+1)}{1-6.2223\dots}} = \boxed{2.2377\dots}

If we plug this number into our equation, it does return with 2 2 , so this is the solution! To get the answer, we can plug this number into the required calculation and we find that the answer is 7 \huge \green{\boxed{7}}

You can never have x + ϕ x ϕ = 1 \frac{x+\phi}{x - \phi} = 1 . That would imply x + ϕ = x ϕ x+\phi = x-\phi , or ϕ = 0 \phi = 0 .

Mark Hennings - 10 months ago

Log in to reply

indeed. have included that in the solution

James Watson - 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...