3 x − ϕ x + ϕ + x + ϕ x − ϕ = 2
If the equation above holds true, find x 6 + 3 x 5 − 1 2 x 4 − 2 5 x 3 + 6 4 x 2 + 7 x .
Notation: ϕ = 2 1 + 5 denotes the golden ratio. .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let x − ϕ x + ϕ = y .
3 y + y 1 = 2 ⟹ y 3 y + 1 = 2 y ⟹ y 3 4 = 2 y + 1 ⟹ y 4 = ( 2 y + 1 ) 3 = 8 y 3 − 1 2 y 2 + 6 y − 1 ⟹ y 4 − 8 y 3 + 1 2 y 2 − 6 y + 1 = 0
There are 2 real roots for this polynomial, those being 1 approximately 6 . 2 2 2 3
We can only solve for x for the second one, because x − ϕ x + ϕ = 1 doesn't exist ever. We must try use other root:
x − ϕ x + ϕ = 6 . 2 2 2 3 … x + ϕ = x ⋅ 6 . 2 2 2 3 ⋯ − ϕ ⋅ 6 . 2 2 2 3 … x ( 1 − 6 . 2 2 2 3 … ) = − ϕ ( 6 . 2 2 2 3 ⋯ + 1 ) x = 1 − 6 . 2 2 2 3 … − ϕ ( 6 . 2 2 2 3 ⋯ + 1 ) = 2 . 2 3 7 7 …
If we plug this number into our equation, it does return with 2 , so this is the solution! To get the answer, we can plug this number into the required calculation and we find that the answer is 7
You can never have x − ϕ x + ϕ = 1 . That would imply x + ϕ = x − ϕ , or ϕ = 0 .
Problem Loading...
Note Loading...
Set Loading...
If we write α = 3 x − φ x + φ , then we note that α = 1 and x = α 3 − 1 α 3 + 1 φ . Now α + α − 3 α 4 − 2 α 3 + 1 ( α − 1 ) ( α 3 − α 2 − α − 1 ) = 2 = 0 = 0 Thus α 3 − α 2 − α − 1 = 0 , and hence α 3 α − 1 2 = α 2 + α + 1 = α − 1 α 3 − 1 = α 3 − 1 2 α 3 = α 3 − 1 α 3 + 1 + 1 = φ x + φ This means that α = x + φ 2 φ + 1 = x + φ x + 3 φ and hence, since α 3 − α 2 − α − 1 = 0 , ( x + 3 φ ) 3 − ( x + 3 φ ) 2 ( x + φ ) − ( x + 3 φ ) ( x + φ ) 2 − ( x + φ ) 3 x 3 + 3 φ x 2 − φ 2 x − 7 φ 3 ( x 3 − x − 7 ) + ( 3 x 2 − x − 1 4 ) φ = 0 = 0 = 0 and so, finally, since φ 2 − φ − 1 = 0 , ( x 3 − x − 7 ) 2 + ( x 3 − x − 7 ) ( 3 x 2 − x − 1 4 ) − ( 3 x 2 − x − 1 4 ) 2 x 6 + 3 x 5 − 1 2 x 4 − 2 5 x 3 + 6 4 x 2 + 7 x − 4 9 = 0 = 0 making the answer 7 .