One Two Three Four Five Present!

Calculus Level 4

π 4 π 2 cos 5 x + cos 4 x 1 2 cos 3 x d x \large \int_{ \frac {\pi}{4} }^{ \frac { \pi }{2} } \frac {\cos 5x + \cos 4x}{1 - 2 \cos 3x} \ dx

If the integral above equals to 1 a 1 b \dfrac1a -\dfrac1b , what is the value of a + b a+b ? Give your answer to 3 decimal places.

Note : You may use the approximation 2 = 1.41421 \sqrt 2 = 1.41421 .

Try solving Could it get any more complicated than this?


The answer is 3.414.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anupam Khandelwal
Mar 28, 2015

T h e i n t e g r a l c a n b e w r i t t e n a s π 4 π 2 2 cos 9 x 2 . cos x 2 . d x 1 2 ( 2 cos 2 3 x 2 1 ) M u l t i p l y i n g t h e n u m e r a t o r a n d d e n o m i n a t o r b y cos 3 x 2 π 4 π 2 2 cos 9 x 2 . cos x 2 . cos 3 x 2 3 cos 3 x 2 4 cos 3 3 x 2 . d x N o w u s i n g cos 3 θ = 4 cos 3 θ 3 cos θ w e g e t π 4 π 2 2 cos 9 x 2 . cos x 2 . cos 3 x 2 cos 9 x 2 . d x π 4 π 2 2 cos x 2 . cos 3 x 2 . d x π 4 π 2 ( cos x + cos 2 x ) . d x N o w t h e i n t e g r a l c a n b e e v a l u a t e d . The\quad integral\quad can\quad be\quad written\quad as\quad \\ \\ \int _{ \frac { \pi }{ 4 } }^{ \frac { \pi }{ 2 } }{ \frac { 2\cos { \frac { 9x }{ 2 } .\cos { \frac { x }{ 2 } } } .dx }{ 1-2\left( 2\cos ^{ 2 }{ \frac { 3x }{ 2 } } -1 \right) } } \\ \\ Multiplying\quad the\quad numerator\quad and\quad denominator\quad by\quad \cos { \frac { 3x }{ 2 } } \\ \\ \int _{ \frac { \pi }{ 4 } }^{ \frac { \pi }{ 2 } }{ \frac { 2\cos { \frac { 9x }{ 2 } } .\cos { \frac { x }{ 2 } } .\cos { \frac { 3x }{ 2 } } }{ 3\cos { \frac { 3x }{ 2 } } -4\cos ^{ 3 }{ \frac { 3x }{ 2 } } } .dx } \\ \\ Now\quad using\quad \cos { 3\theta } =4\cos ^{ 3 }{ \theta } -3\cos { \theta } \quad we\quad get\\ \\ \int _{ \frac { \pi }{ 4 } }^{ \frac { \pi }{ 2 } }{ \frac { 2\cos { \frac { 9x }{ 2 } } .\cos { \frac { x }{ 2 } } .\cos { \frac { 3x }{ 2 } } }{ -\cos { \frac { 9x }{ 2 } } } .dx } \\ \\ -\int _{ \frac { \pi }{ 4 } }^{ \frac { \pi }{ 2 } }{ 2\cos { \frac { x }{ 2 } } } .\cos { \frac { 3x }{ 2 } .dx } \\ -\int _{ \frac { \pi }{ 4 } }^{ \frac { \pi }{ 2 } }{ (\cos { x } +\cos { 2x } } ).dx\\ \\ Now\quad the\quad integral\quad can\quad be\quad evaluated.\\ W h i c h c o m e s o u t t o b e 1 2 1 2 H e n c e t h e a n s w e r i s 2 + 2 . Which\quad comes\quad out\quad to\quad be\quad \frac { 1 }{ \sqrt { 2 } } -\frac { 1 }{ 2 } \\ Hence\quad the\quad answer\quad is\quad 2+\sqrt { 2 } .

Nice question and solution

Samarth Agarwal - 6 years ago
Nick Ting
Jul 31, 2015

Using the identity c o s A + c o s B = 2 c o s A + B 2 c o s A B 2 cosA+cosB=2cos\frac{A+B}{2}\ cos\frac{A-B}{2}\ , c o s 5 x + c o s 4 x cos5x+cos4x can be expressed as 2 c o s 9 2 x c o s 1 2 x 2cos\frac { 9 }{ 2 } \ x cos\frac{1}{2}\ x . With this identity c o s 3 x c o x = 2 c o s 2 x 1 \frac{cos3x}{cox}=2cos2x-1 , the denominator can be expressed as c o s 9 2 x c o s 3 2 x -\frac{cos\frac{9}{2}x}{cos\frac{3}{2}x} , where the angle is replaced by 3 x 2 \frac{3x}{2} .

Bringing them together, we get π / 4 π / 2 2 c o s 9 2 x c o s 1 2 x c o s 9 2 x c o s 3 2 x d x \int _{ \pi /4 }^{ \pi /2 }{ \frac{2cos\frac { 9 }{ 2 } \ x cos\frac{1}{2}\ x}{ -\frac{cos\frac{9}{2}x}{cos\frac{3}{2}x}}dx } .

After simplification, we obtain π / 4 π / 2 2 c o s 3 x 2 c o s x 2 d x \int _{ \pi /4 }^{ \pi /2 }{ -2cos\frac { 3x }{ 2 } cos\frac { x }{ 2 }dx } which can be rewritten as π / 4 π / 2 ( c o s 2 x + c o s x ) d x -\int _{ \pi /4 }^{ \pi /2 }({ cos2x } +cosx )dx = [ s i n 2 x 2 + s i n x ] π / 4 π / 2 = 1 + 1 2 + 1 2 = 1 2 1 2 =-{ \left[ \frac { sin 2x }{ 2 } +sin x \right] }_{ \pi /4 }^{ \pi /2 }\\ =\quad -1+\frac { 1 }{ 2 } +\frac { 1 }{ \sqrt { 2 } } \\ =\frac { 1 }{ \sqrt { 2 } } -\quad \frac { 1 }{ 2 }

Therefore, a + b = 3.414 a+b=3.414

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...