∫ 4 π 2 π 1 − 2 cos 3 x cos 5 x + cos 4 x d x
If the integral above equals to a 1 − b 1 , what is the value of a + b ? Give your answer to 3 decimal places.
Note : You may use the approximation 2 = 1 . 4 1 4 2 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice question and solution
Using the identity c o s A + c o s B = 2 c o s 2 A + B c o s 2 A − B , c o s 5 x + c o s 4 x can be expressed as 2 c o s 2 9 x c o s 2 1 x . With this identity c o x c o s 3 x = 2 c o s 2 x − 1 , the denominator can be expressed as − c o s 2 3 x c o s 2 9 x , where the angle is replaced by 2 3 x .
Bringing them together, we get ∫ π / 4 π / 2 − c o s 2 3 x c o s 2 9 x 2 c o s 2 9 x c o s 2 1 x d x .
After simplification, we obtain ∫ π / 4 π / 2 − 2 c o s 2 3 x c o s 2 x d x which can be rewritten as − ∫ π / 4 π / 2 ( c o s 2 x + c o s x ) d x = − [ 2 s i n 2 x + s i n x ] π / 4 π / 2 = − 1 + 2 1 + 2 1 = 2 1 − 2 1
Therefore, a + b = 3 . 4 1 4
Problem Loading...
Note Loading...
Set Loading...
T h e i n t e g r a l c a n b e w r i t t e n a s ∫ 4 π 2 π 1 − 2 ( 2 cos 2 2 3 x − 1 ) 2 cos 2 9 x . cos 2 x . d x M u l t i p l y i n g t h e n u m e r a t o r a n d d e n o m i n a t o r b y cos 2 3 x ∫ 4 π 2 π 3 cos 2 3 x − 4 cos 3 2 3 x 2 cos 2 9 x . cos 2 x . cos 2 3 x . d x N o w u s i n g cos 3 θ = 4 cos 3 θ − 3 cos θ w e g e t ∫ 4 π 2 π − cos 2 9 x 2 cos 2 9 x . cos 2 x . cos 2 3 x . d x − ∫ 4 π 2 π 2 cos 2 x . cos 2 3 x . d x − ∫ 4 π 2 π ( cos x + cos 2 x ) . d x N o w t h e i n t e g r a l c a n b e e v a l u a t e d . W h i c h c o m e s o u t t o b e 2 1 − 2 1 H e n c e t h e a n s w e r i s 2 + 2 .