A simple limit

Calculus Level 1

1 1 2 + 1 4 1 8 + 1 16 1 32 + = ? 1 - \dfrac 12 + \dfrac 14 - \dfrac 18 + \dfrac 1{16} - \dfrac 1{32} + \cdots = \, ?

11 16 \dfrac{11}{16} 341 512 \dfrac{341}{512} 5 8 \dfrac 58 2 3 \dfrac 23

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Harsh Khatri
Feb 7, 2016

S = 1 + 1 2 + 1 4 + 1 8 \displaystyle S = 1 + -\frac{1}{2} + \frac{1}{4} + -\frac{1}{8} \ldots

S = 1 + 1 2 ( 1 + 1 2 + 1 4 ) \displaystyle S = 1 + -\frac{1}{2}(1 + -\frac{1}{2} + \frac{1}{4} \ldots)

S = 1 S 2 \displaystyle S = 1 - \frac{S}{2}

3 S 2 = 1 \displaystyle \frac{3S}{2} = 1

S = 2 3 \displaystyle \Rightarrow \boxed{ S = \frac{2}{3}}

Mateus Gomes
Feb 7, 2016

1 1 2 + 1 4 1 8 + 1 16 1 32 . . . = ( 1 + 1 4 + 1 16 + . . . ) ( 1 2 + 1 8 + 1 32 + . . . ) = ( 1 1 1 4 ) ( 1 2 1 1 4 ) = 4 3 2 3 = 2 3 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \frac{1}{32} ...=(1+\frac{1}{4}+\frac{1}{16}+ ...) -(\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+...)=(\frac{1}{1-\frac{1}{4}})-(\frac{\frac{1}{2}}{1-\frac{1}{4}})=\frac{4}{3}-\frac{2}{3}=\Large\color{#3D99F6}{\boxed{\frac{2}{3}}}

Denton Young
Feb 7, 2016

The series can be written as (1 - 1/2) + (1/4 - 1/8) + (1/16 -1/32)... = 1/2 + 1/8 + 1/32... = 1/2 (1 + 1/4 + 1/16...) = 1/2 (1/(1 - 1/4)) = 1/2 (4/3) = 2/3

Moderator note:

Nice observation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...