A calculus problem by Carwaniwer Qee

Calculus Level 4

0 π 1 sin x d x = ? \large\int_0^\pi \sqrt{1-\sin x}\, dx=\, ?

2 2 1 2\sqrt 2-1 4 2 4 4\sqrt 2-4 2 2 2 2\sqrt 2-2 2 1 \sqrt 2-1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Brian Lie
Jun 9, 2018

I = 0 π 1 sin x d x = 0 π sin 2 x 2 + cos 2 x 2 2 sin x 2 cos x 2 d x = 0 π ( sin x 2 cos x 2 ) 2 d x = 0 π sin x 2 cos x 2 d x = 0 π / 2 ( cos x 2 sin x 2 ) d x + π / 2 π ( sin x 2 cos x 2 ) d x = ( 2 sin x 2 + 2 cos x 2 ) 0 π / 2 + ( 2 cos x 2 2 sin x 2 ) π / 2 π = 4 2 4 \begin{aligned} I&=\int_0^\pi \sqrt{1-\sin x}\, dx \\&=\int_0^\pi \sqrt{\sin^2\frac x2+\cos^2\frac x2-2\sin \frac x2\cos \frac x2}\, dx \\&=\int_0^\pi \sqrt{\left(\sin\frac x2-\cos\frac x2\right)^2}\, dx \\&=\int_0^\pi\left|\sin\frac x2-\cos\frac x2\right|\, dx \\&=\int_0^{\pi /2}\left(\cos\frac x2-\sin\frac x2\right)\, dx+\int_{\pi/2}^\pi\left(\sin\frac x2-\cos\frac x2\right)\, dx \\&=\left.\left(2\sin\frac x2+2\cos\frac x2\right)\right|_0^{\pi /2}+\left.\left(-2\cos\frac x2-2\sin\frac x2\right)\right|_{\pi /2}^\pi \\&=\boxed{4\sqrt2-4} \end{aligned}

Vincent Moroney
Jun 11, 2018

I = 0 π 1 sin x d x = 0 π 1 sin 2 x 1 + sin x d x = 0 π cos x 1 + sin x d x = 0 π 2 cos x 1 + sin x d x + π 2 π cos x 1 + sin x d x = 1 2 1 u d u + 1 2 1 u d u via u = 1+sin x I = 2 1 2 1 u d u = 2 ( 2 u 1 2 ) = 4 2 4 \begin{aligned} I = &\int_0^{\pi} \sqrt{1-\sin x}\,dx \\ \\ = &\int_0^{\pi} \frac{\sqrt{1-\sin^2 x}}{\sqrt{1+\sin x}}\, dx \\ \\ = & \int_0^{\pi}\frac{| \cos x |}{\sqrt{1+\sin x}} \, dx \\ \\ = & \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{1+\sin x}} \,dx + \int_{\frac{\pi}{2}}^{\pi} \frac{-\cos x}{\sqrt{1+\sin x}} \,dx \\ = & \int_1^2 \frac{1}{\sqrt{u}}\,du + \int_1^2 \frac{1}{\sqrt{u}}\,du \, \, \, \, \, \, \, \, \, \text{via u = 1+sin x} \\ \\ I = & 2\int_1^2\frac{1}{\sqrt{u}}\,du = 2\big( 2\sqrt{u} \big |_1^2 \big) = \boxed{4\sqrt{2}-4} \end{aligned}

Chew-Seong Cheong
Jun 11, 2018

I = 0 π 1 sin x d x Since integrand is symmetrical about π 2 = 2 0 π 2 1 sin x d x By half-angle tangent substitution and = 2 0 1 1 2 t 1 + t 2 2 d t 1 + t 2 let t = tan x 2 d t = 1 2 sec 2 x 2 d x = 4 0 1 1 t ( t 2 + 1 ) 3 2 d t = 4 0 1 ( 1 ( t 2 + 1 ) 3 2 t ( t 2 + 1 ) 3 2 ) d t Let t = tan θ d t = sec 2 θ d θ = 4 [ 1 t 2 + 1 ] 0 1 4 0 π 4 sec 2 θ sec 3 θ d θ = 4 0 π 4 cos θ d θ 4 ( 1 1 2 ) = 4 sin θ 0 π 4 4 + 2 2 = 2 2 4 + 2 2 = 4 2 4 \begin{aligned} I & = \int_0^\pi \sqrt{1-\sin x}\ dx & \small \color{#3D99F6} \text{Since integrand is symmetrical about }\frac \pi 2 \\ & = 2 \int_0^\frac \pi 2 \sqrt{1-\sin x}\ dx & \small \color{#3D99F6} \text{By half-angle tangent substitution and} \\ & = 2 \int_0^1 \sqrt{1-\frac {2t}{1+t^2}}\cdot \frac {2dt}{1+t^2} & \small \color{#3D99F6} \text{let }t = \tan \frac x2 \implies dt = \frac 12 \sec^2 \frac x2 dx \\ & = 4 \int_0^1 \frac {1-t}{(t^2+1)^\frac 32} dt \\ & = 4 \int_0^1 \left({\color{#3D99F6} \frac 1{(t^2+1)^\frac 32}} - \frac t{(t^2+1)^\frac 32}\right) dt &\small \color{#3D99F6} \text{Let }t = \tan \theta \implies dt = \sec^2 \theta \ d\theta \\ & = 4 \left[- \frac 1{\sqrt{t^2+1}}\right]_0^1 - 4 \color{#3D99F6} \int_0^\frac \pi 4 \frac {\sec^2 \theta}{\sec^3 \theta}\ d\theta \\ & = 4 \int_0^\frac \pi 4 \cos \theta\ d\theta - 4\left(1-\frac 1{\sqrt 2}\right) \\ & = 4 \sin \theta\ \bigg|_0^\frac \pi 4 - 4 + 2\sqrt 2 \\ & = 2\sqrt 2 - 4 + 2\sqrt 2 \\ & = \boxed{4\sqrt 2-4} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...