A simple problem

Geometry Level 3

Let a = sin 1 0 a= \sin 10^\circ , b = sin 5 0 b= \sin 50^\circ , c = sin 7 0 c= \sin 70^\circ , then relation between a, b and c is:

2 a + 4 b = c 2a + 4b = c 2 a + b = c 2a + b = c None of these. a b = c a - b = c 2 a 4 b = c 2a - 4b = c a 2 b = c a - 2b = c a + b = c a + b = c

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We have that b = sin ( 5 0 ) = sin ( 6 0 1 0 ) = sin ( 6 0 ) cos ( 1 0 ) cos ( 6 0 ) sin ( 1 0 ) b = \sin(50^{\circ}) = \sin(60^{\circ} - 10^{\circ}) = \sin(60^{\circ})\cos(10^{\circ}) - \cos(60^{\circ})\sin(10^{\circ})

and that c = sin ( 7 0 ) = sin ( 6 0 + 1 0 ) = sin ( 6 0 ) cos ( 1 0 ) + cos ( 6 0 ) sin ( 1 0 ) . c = \sin(70^{\circ}) = \sin(60^{\circ} + 10^{\circ}) = \sin(60^{\circ})\cos(10^{\circ}) + \cos(60^{\circ})\sin(10^{\circ}).

Thus c b = 2 cos ( 6 0 ) sin ( 1 0 ) = 2 1 2 a = a a + b = c . c - b = 2\cos(60^{\circ})\sin(10^{\circ}) = 2*\dfrac{1}{2}*a = a \Longrightarrow \boxed{a + b = c}.

Using the identity below, we have:

cos 4 0 + cos 8 0 + cos 12 0 + cos 16 0 = 1 2 cos θ = sin ( 90 θ ) cos θ = cos ( 180 θ ) sin 5 0 + sin 1 0 1 2 cos 2 0 = 1 2 sin 5 0 + sin 1 0 sin 7 0 = 0 sin 1 0 + sin 5 0 = sin 7 0 \begin{aligned} \color{#3D99F6}{\cos 40^\circ} + \color{#3D99F6}{\cos 80^\circ} + \cos 120^\circ + \color{#D61F06}{\cos 160^\circ} & = -\frac{1}{2} \quad \quad \small \color{#3D99F6}{\cos \theta^\circ = \sin (90-\theta)^\circ} \quad \color{#D61F06}{\cos \theta^\circ = - \cos (180-\theta)^\circ} \\ \color{#3D99F6}{\sin 50^\circ} + \color{#3D99F6}{\sin 10^\circ} - \frac{1}{2} - \color{#D61F06}{\cos 20^\circ} & = -\frac{1}{2} \\ \color{#3D99F6}{\sin 50^\circ} + \color{#3D99F6}{\sin 10^\circ} - \color{#D61F06}{\sin 70^\circ} & = 0 \\ \color{#3D99F6}{\sin 10^\circ} + \color{#3D99F6}{\sin 50^\circ} & = \color{#D61F06}{\sin 70^\circ} \end{aligned}

a + b = c \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \space \boxed{\color{#3D99F6}{a} + \color{#3D99F6}{b} = \color{#D61F06}{c}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...