An algebra problem by Rahul Katarki

Algebra Level 3

{ 2 3 x + 4 3 y + 1 = 119 2 x 1 + 3 y = 4 \begin{cases} 2^{3x+ 4} - 3^{y+1} = 119 \\ 2^{x - 1} + 3^y = 4\end{cases}

Solve the system of equations above. Submit your answer as the value of x x .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ved Pradhan
Jun 27, 2020

{ 2 3 x + 4 3 y + 1 = 119 2 x 1 + 3 y = 4 \begin{cases} 2^{3x+4}-3^{y+1}=119 \\ 2^{x-1}+3^{y}=4 \end{cases} 2 3 x + 4 3 ( 3 y ) = 119 2^{3x+4}-3(3^{y})=119 2 3 x + 4 3 ( 4 2 x 1 ) = 119 2^{3x+4}-3(4-2^{x-1})=119 2 3 x + 4 12 + 3 ( 2 x 1 ) = 119 2^{3x+4}-12+3(2^{x-1})=119 16 ( 2 x ) 3 + 1.5 ( 2 x ) = 131 16(2^{x})^{3}+1.5(2^{x})=131 32 ( 2 x ) 3 + 3 ( 2 x ) = 262 32(2^{x})^{3}+3(2^{x})=262 2 x = 2 2^{x}=2 x = 1 \boxed{x=1}

Chew-Seong Cheong
Jun 28, 2020

Given that { 2 3 x + 4 3 y + 1 = 119 . . . ( 1 ) 2 x 1 + 3 y = 4 . . . ( 2 ) \begin{cases} 2^{3x+4} - 3^{y+1} = 119 & ...(1) \\ 2^{x-1} + 3^y = 4 & ...(2) \end{cases}

3 × ( 2 ) : 3 ( 2 x 1 ) + 3 y + 1 = 12 . . . ( 2 a ) \implies 3 \times (2): \ 3(2^{x-1}) + 3^{y+1} = 12 \ ...(2a) and

( 1 ) + ( 2 a ) : 2 3 x + 4 + 3 ( 2 x 1 ) = 119 + 12 2 3 x + 4 + ( 2 2 1 ) 2 x 1 = 131 2 3 x + 4 + 2 x + 1 2 x 1 = 131 \begin{aligned} (1)+(2a): \quad 2^{3x+4} + 3(2^{x-1}) & = 119 + 12 \\ 2^{3x+4} + (2^2-1)2^{x-1} & = 131 \\ 2^{3x+4} + 2^{x+1} - 2^{x-1} & = 131 \end{aligned}

Note that the right-hand side 131 131 is odd, therefore the left-hand side must also be odd. The only way to make the LHS to be odd is 2 x 1 = 2 0 = 1 2^{x-1} = 2^0 = 1 , x = 1 \implies x = 1 . Then we note that the L H S = 2 7 + 2 2 2 0 = 128 + 4 1 = 131 = R H S LHS = 2^7 + 2^2 - 2^0 = 128 + 4 - 1 = 131 = RHS . Therefore x = 1 x = \boxed 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...