A simple radical expression!

Algebra Level 3

6 + log 3 2 ( 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 ) \large 6+\log _{ \frac { 3 }{ 2 } }{ \left( \dfrac { 1 }{ 3\sqrt { 2 } } \sqrt { 4-\dfrac { 1 }{ 3\sqrt { 2 } } \sqrt { 4-\dfrac { 1 }{ 3\sqrt { 2 } } \sqrt { 4-\dfrac { 1 }{ 3\sqrt { 2 } } \cdots } } } \right) }

What is the value of the expression above?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zee Ell
Sep 8, 2016

Let A = 4 1 3 2 4 1 3 2 4 1 3 2 . . . \text {Let } A = \sqrt {4 - \frac {1}{ 3 \sqrt {2} } \sqrt {4 - \frac {1}{3 \sqrt {2}} \sqrt {4 - \frac {1}{3 \sqrt {2}} ... }}}

It is easy to see, that A > 0 .

Then:

A = 4 1 3 2 A A = \sqrt {4 - \frac {1}{ 3 \sqrt {2} }A}

A 2 = 4 1 3 2 A A^2 = 4 - \frac {1}{ 3 \sqrt {2} }A

A 2 + 1 3 2 A 4 = 0 A^2 + \frac {1}{ 3 \sqrt {2} }A - 4 = 0

Solving the quadratic equation above for A > 0 , we get:

A = 1 3 2 + 289 18 2 = 1 + 17 6 2 = 8 3 2 A = \frac {- \frac {1}{ 3 \sqrt {2} } + \sqrt { \frac {289}{18} }}{2} = \frac {-1 + 17}{ 6 \sqrt {2} } = \frac {8}{ 3 \sqrt {2} }

Now, our original expression can be written as:

6 + log 3 2 ( 1 3 2 A ) = 6 + log 3 2 ( 1 3 2 × 8 3 2 ) = 6 + log 3 2 ( 4 9 ) = 6 + ( 2 ) = 4 6 + \log _{ \frac {3}{2} }{( \frac {1}{ 3 \sqrt {2} } A) } = 6 + \log _{ \frac {3}{2} }{( \frac {1}{ 3 \sqrt {2} } × \frac {8}{ 3 \sqrt {2} } ) } = 6 + \log _{ \frac {3}{2} }{( \frac {4}{9}) } = 6 + (-2) = \boxed {4}

Tapas Mazumdar
Sep 8, 2016

Consider 4 1 3 2 4 1 3 2 4 1 3 2 = x \sqrt { 4-\dfrac { 1 }{ 3\sqrt { 2 } } \sqrt { 4-\dfrac { 1 }{ 3\sqrt { 2 } } \sqrt { 4-\dfrac { 1 }{ 3\sqrt { 2 } } \cdots } } } = x

x 2 = 4 1 3 2 4 1 3 2 4 1 3 2 \Longrightarrow x^{2} = 4-\dfrac { 1 }{ 3\sqrt { 2 }} \sqrt { 4-\dfrac { 1 }{ 3\sqrt { 2 } } \sqrt { 4-\dfrac { 1 }{ 3\sqrt { 2 } } \cdots } }

x 2 = 4 1 3 2 x \Longrightarrow x^{2} = 4-\dfrac{1}{3\sqrt{2}}x

3 2 x 2 + x 12 2 = 0 \Longrightarrow 3\sqrt{2}x^{2}+x-12\sqrt{2}=0

x = 1 ± 1 4 ( 12 2 ) ( 3 2 ) 6 2 \Longrightarrow x=\dfrac{-1\pm\sqrt{1-4\left(-12\sqrt{2}\right)\left(3\sqrt{2}\right)}}{6\sqrt{2}}

x = 1 ± 17 6 2 \Longrightarrow x=\dfrac{-1\pm17}{6\sqrt{2}}

x = 8 3 2 \Longrightarrow x=\dfrac{8}{3\sqrt{2}} or x = 3 2 x=\dfrac{-3}{\sqrt{2}}

x = 4 2 3 \Longrightarrow x=\dfrac{4\sqrt{2}}{3} or x = 3 2 2 x=\dfrac{-3\sqrt{2}}{2}

Out of the following two solutions we need x x to be positive to carry logarithmic operation on it.

x = 4 2 3 \therefore x=\dfrac{4\sqrt{2}}{3}

Now, 1 3 2 × 4 2 3 = 4 9 \dfrac{1}{3\sqrt{2}}\times\dfrac{4\sqrt{2}}{3}=\dfrac{4}{9}

Hence, log 3 / 2 4 9 = 2 \log_{{3}/{2}}{\dfrac{4}{9}}=-2

And so, 6 + ( 2 ) = 4 6+\left(-2\right)=\large\boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...