A crazy series, maybe

Calculus Level 4

( 3 3 ) + ( 5 3 ) 1 2 + ( 7 3 ) 1 2 2 + ( 9 3 ) 1 2 3 + ( 11 3 ) 1 2 4 + = ? \binom{3}{3} + \binom{5}{3}\frac {1}{ 2 } + {7 \choose 3}\frac {1}{ 2^2 } + {9 \choose 3}\frac {1}{ 2^3 } + {11 \choose 3 }\frac {1}{ 2^4 } + \ldots = \ ?


The answer is 68.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shaurya Gupta
Nov 14, 2015

( 3 3 ) , ( 5 3 ) , ( 7 3 ) , . . . {3\choose 3}, {5 \choose 3}, {7 \choose 3}, ... are the alternative terms in the expansion of ( 1 + x ) 4 (1+x)^{-4} .
( 1 x ) 4 + ( 1 + x ) 4 2 = ( 3 3 ) + ( 5 3 ) x 2 + ( 7 3 ) x 4 + . . . \frac{(1-x)^{-4}+(1+x)^{-4}}{2} ={3\choose 3}+{5\choose 3}x^2+{7\choose 3}x^4+... Substitute x = 1 2 x=\sqrt{\frac{1}{2}} to get the required sum.

Open it and observe that it is simply 1 3 ! n = 0 ( 2 n + 3 ) ( 2 n + 2 ) ( 2 n + 1 ) ( 1 2 ) 2 n \displaystyle \dfrac{1}{3!} \sum_{n=0}^{\infty}{(2n+3)(2n+2)(2n+1){\left(\frac{1}{\sqrt{2}}\right)}^{2n}}

= 1 6 d 3 d x 3 ( x 3 1 x 2 ) x = 1 2 \displaystyle = \frac{1}{6} \dfrac{d^3}{dx^3}\left(\frac{x^3}{1-x^2}\right)|_{x=\frac{1}{\sqrt{2}}}

Kartik Sharma - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...