A simple system of equations

Algebra Level pending

{ a + b = 25 4 ( 1 + a ) ( 1 + b ) = 15 2 \begin {cases} a + b = \dfrac{25}{4} \\ (1 + \sqrt{a})(1 + \sqrt{b}) = \dfrac{15}{2} \end {cases}

The system of equations above holds true for real numbers a a and b b . Find a b ab .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Given that:

{ a + b = 25 4 ( 1 + a ) ( 1 + b ) = 15 2 { ( a + b ) 2 2 a b = 25 4 1 + a + b + a b = 15 2 { ( a + b ) 2 = 25 4 + 2 a b . . . ( 1 ) a + b = 13 2 a b . . . ( 2 ) \begin{cases} a + b = \dfrac {25}4 \\ (1 + \sqrt a)(1+\sqrt b) = \dfrac {15}2 \end{cases} \implies \begin{cases} (\sqrt a + \sqrt b)^2 - 2\sqrt{ab} = \dfrac {25}4 \\ 1 + \sqrt a + \sqrt b + \sqrt{ab} = \dfrac {15}2 \end{cases} \\ \implies \begin{cases} (\sqrt a + \sqrt b)^2 = \dfrac {25}4 + 2\sqrt{ab} & ...(1) \\ \sqrt a + \sqrt b = \dfrac {13}2 - \sqrt{ab} & ...(2) \end{cases}

From ( 2 ) 2 = ( 1 ) (2)^2 = (1) :

( 13 2 a b ) 2 = 25 4 + 2 a b a b 13 a b + 169 4 = 25 4 + 2 a b a b 15 a b + 36 = 0 A quadratic equation of a b ( a b 3 ) ( a b 12 ) = 0 \begin{aligned} \left(\frac {13}2 - \sqrt{ab}\right)^2 & = \frac {25}4 + 2\sqrt{ab} \\ ab - 13\sqrt{ab} + \frac {169}4 & = \frac {25}4 + 2\sqrt{ab} \\ ab - 15 \sqrt{ab} + 36 & = 0 & \small \blue{\text{A quadratic equation of }\sqrt{ab}} \\ (\sqrt{ab}-3)(\sqrt{ab}-12) & = 0 \end{aligned}

{ a b = 3 a b = 9 a b = 12 ( 2 ) : a + b = 13 2 12 < 0 , No real solution \implies \begin{cases} \sqrt{ab} = 3 & \implies ab = \blue{\boxed 9} \\ \sqrt{ab} = 12 & \implies (2): \ \sqrt a + \sqrt b = \dfrac {13}2 - 12 < 0, \red{\text{ No real solution}} \end{cases}

@Klement Chua , we should mention that a a and b b are real, because there is a complex solution.

Chew-Seong Cheong - 1 month ago

Log in to reply

Correct statement

Vijay Simha - 1 month ago

Log in to reply

Of course correct because I changed it.

Chew-Seong Cheong - 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...