A geometry problem by A Former Brilliant Member

Geometry Level 3

Given that π 2 < x < π \dfrac{\pi}{2}<x<\pi , find the value of

1 + sin x 1 sin x + 1 sin x 1 + sin x . \sqrt{ \frac{1+\sin x}{1-\sin x} }+\sqrt{ \frac{1-\sin x}{1+\sin x} }.

2 sin x -\dfrac{2}{\sin x} 2 cos x -\dfrac{2}{\cos x} 2 sin x \dfrac{2}{\sin x} 2 cos x \dfrac{2}{\cos x}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 22, 2019

Using half-angle tangent substitution , we have sin x = 2 t 1 + t 2 \sin x = \dfrac {2t}{1+t^2} and cos x = 1 t 2 1 + t 2 \cos x = \dfrac {1-t^2}{1+t^2} , where t = tan x 2 t = \tan \frac x2 . Then:

1 + sin x 1 sin x + 1 sin x 1 + sin x = 1 + 2 t 1 + t 2 1 2 t 1 + t 2 + 1 2 t 1 + t 2 1 + 2 t 1 + t 2 = t 2 + 2 t + 1 t 2 2 t + 1 + t 2 2 t + 1 t 2 + 2 t + 1 = t + 1 t 1 + t 1 t + 1 = 2 ( t 2 + 1 ) t 2 1 = 2 ( 1 + t 2 1 t 2 = 2 cos x \begin{aligned} \sqrt{\frac {1+\sin x}{1-\sin x}} + \sqrt{\frac {1-\sin x}{1+\sin x}} & = \sqrt{\frac {1+\frac {2t}{1+t^2}}{1-\frac {2t}{1+t^2}}} + \sqrt{\frac {1-\frac {2t}{1+t^2}}{1+\frac {2t}{1+t^2}}} \\ & = \sqrt{\frac {t^2 + 2t+1}{t^2 - 2t+1}} + \sqrt{\frac {t^2 - 2t+1}{t^2 + 2t+1}} \\ & = \frac {t+1}{t-1} + \frac {t-1}{t+1} \\ & = \frac {2(t^2+1)}{t^2-1} = - \frac {2(1+t^2}{1-t^2} = \boxed{- \dfrac 2{\cos x}} \end{aligned}

Is t less than 1?

A Former Brilliant Member - 1 year, 10 months ago

Log in to reply

No, 1 < tan x 2 < 1 < \tan \frac x2 < \infty for π 2 < x < π \frac \pi 2 < x < \pi .

Chew-Seong Cheong - 1 year, 10 months ago
Hassan Abdulla
Jul 23, 2019

1 + sin ( x ) 1 sin ( x ) 1 + sin ( x ) 1 + sin ( x ) = 1 + 2 sin ( x ) + sin 2 ( x ) cos 2 ( x ) = sec 2 ( x ) + 2 sec ( x ) tan ( x ) + tan 2 ( x ) = ( sec ( x ) + t a n ( x ) ) 2 1 sin ( x ) 1 + sin ( x ) 1 sin ( x ) 1 sin ( x ) = 1 2 sin ( x ) + sin 2 ( x ) cos 2 ( x ) = sec 2 ( x ) 2 sec ( x ) tan ( x ) + tan 2 ( x ) = ( sec ( x ) t a n ( x ) ) 2 N o w 1 + sin ( x ) 1 sin ( x ) + 1 sin ( x ) 1 + sin ( x ) = ( sec ( x ) + t a n ( x ) ) 2 + ( sec ( x ) t a n ( x ) ) 2 = sec ( x ) + t a n ( x ) + sec ( x ) t a n ( x ) π 2 < x < π sec ( x ) + t a n ( x ) 0 sec ( x ) + t a n ( x ) = ( sec ( x ) + t a n ( x ) ) π 2 < x < π cos ( x ) < 0 , sin ( x ) 1 sin ( x ) cos ( x ) 1 cos ( x ) sec ( x ) t a n ( x ) 0 sec ( x ) t a n ( x ) = ( sec ( x ) t a n ( x ) ) s o sec ( x ) + t a n ( x ) + sec ( x ) t a n ( x ) = ( sec ( x ) + t a n ( x ) ) ( sec ( x ) t a n ( x ) ) = 2 sec ( x ) = 2 cos ( x ) \begin{aligned} &\frac{1+\sin(x)}{1-\sin(x)} {\color{#D61F06} \cdot \frac{1+\sin(x)}{1+\sin(x)}}=\frac{1+2 \sin(x)+\sin^2(x)}{\cos^2(x)} =\sec^2(x)+ 2\sec(x) \tan(x) + \tan^2(x)=(\sec(x)+tan(x))^2 \\ &\frac{1-\sin(x)}{1+\sin(x)} {\color{#D61F06} \cdot \frac{1-\sin(x)}{1-\sin(x)}}=\frac{1-2 \sin(x)+\sin^2(x)}{\cos^2(x)} =\sec^2(x)- 2\sec(x) \tan(x) + \tan^2(x)=(\sec(x)-tan(x))^2 \\ & Now\\ &\sqrt{\frac{1+\sin(x)}{1-\sin(x)}} + \sqrt{\frac{1-\sin(x)}{1+\sin(x)}}=\sqrt{(\sec(x)+tan(x))^2} + \sqrt{(\sec(x)-tan(x))^2} = |\sec(x)+tan(x)| + |\sec(x)-tan(x)|\\ & \color{#D61F06} \frac{\pi}{2}< x < \pi \Rightarrow \sec(x)+tan(x) \leq 0 \Rightarrow |\sec(x)+tan(x)| = -(\sec(x)+tan(x)) \\ & \color{#D61F06} \frac{\pi}{2}< x < \pi \Rightarrow \cos(x)<0 , \sin(x) \leq 1 \Rightarrow \frac{\sin(x)}{\cos(x)} \geq \frac{1}{\cos(x)} \Rightarrow \sec(x)-tan(x) \leq 0 \Rightarrow |\sec(x)-tan(x)|= - (\sec(x)-tan(x)) \\ & so \\ &|\sec(x)+tan(x)| + |\sec(x)-tan(x)| = -(\sec(x)+tan(x)) - (\sec(x)-tan(x)) = -2 \sec(x) = - \frac{2}{\cos(x)}\\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...