A simplified version of simple question

Geometry Level 2

( tan θ + sec θ ) ( tan α + sec α ) = 1 \large (\tan \theta + \sec \theta)(\tan \alpha + \sec \alpha) = 1

Given the above, find tan 2 θ sec 2 α \tan^2 \theta - \sec^2 \alpha for θ [ π 2 , π 2 ] \theta \in \left[-\frac \pi 2, \frac \pi 2 \right]


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 16, 2020

I don't see how the identity below is related to ( tan θ + sec θ ) ( tan α + sec α ) = 1 (\tan \theta + \sec \theta)(\tan \alpha + \sec \alpha) = 1 .

Using the identity sec 2 x tan 2 x = 1 \sec^2 x-\tan^2 x=1 , we can conclude that sec θ = sec x , tan θ = tan x \sec \theta =\sec x, \tan \theta =-\tan x


( tan θ + sec θ ) ( tan α + sec α ) = 1 ( sin θ + 1 cos θ ) ( sin α + 1 cos α ) = 1 ( sin θ + 1 cos θ ) = ( cos α sin α + 1 ) Using half-angle tangent substitution 2 tan θ 2 1 + tan 2 θ 2 + 1 1 tan 2 θ 2 1 + tan 2 θ 2 = 1 tan 2 α 2 1 + tan 2 α 2 2 tan α 2 1 + tan 2 α 2 + 1 ( 1 + tan θ 2 ) 2 1 tan 2 θ 2 = 1 tan 2 α 2 ( 1 + tan α 2 ) 2 1 + tan θ 2 1 tan θ 2 = 1 tan α 2 1 + tan α 2 tan ( π 4 + θ 2 ) = tan ( π 4 α 2 ) α = θ \begin{aligned} (\tan \theta + \sec \theta) (\tan \alpha + \sec \alpha) & = 1 \\ \left(\frac {\sin \theta + 1}{\cos \theta} \right) \left(\frac {\sin \alpha + 1}{\cos \alpha} \right) & = 1 \\ \left(\frac {\sin \theta + 1}{\cos \theta} \right) & = \left(\frac{\cos \alpha} {\sin \alpha + 1} \right) & \small \blue{\text{Using half-angle tangent substitution}} \\ \frac {\frac {2\tan \frac \theta 2}{1+\tan^2 \frac \theta 2}+1}{\frac {1-\tan^2 \frac \theta 2}{1+\tan^2 \frac \theta 2}} & = \frac {\frac {1-\tan^2 \frac \alpha 2}{1+\tan^2 \frac \alpha 2}}{\frac {2\tan \frac \alpha 2}{1+\tan^2 \frac \alpha 2}+1} \\ \frac {(1+\tan \frac \theta 2)^2}{1-\tan^2 \frac \theta 2} & = \frac {1-\tan^2 \frac \alpha 2} {(1+\tan \frac \alpha 2)^2} \\ \frac {1+\tan \frac \theta 2}{1-\tan \frac \theta 2} & = \frac {1-\tan \frac \alpha 2} {1+\tan \frac \alpha 2} \\ \tan \left(\frac \pi 4 + \frac \theta 2 \right) & = \tan \left(\frac \pi 4 - \frac \alpha 2 \right) \\ \implies \alpha & = - \theta \end{aligned}

Therefore,

tan 2 θ sec 2 α = tan 2 θ sec 2 ( θ ) = tan 2 θ sec 2 θ = tan 2 θ ( 1 + tan 2 θ ) = 1 \begin{aligned} \tan^2 \theta - \sec^2 \alpha & = \tan^2 \theta - \sec^2 (-\theta) \\ & = \tan^2 \theta - \sec^2 \theta \\ & = \tan^2 \theta - (1 + \tan^2 \theta ) \\ & = \boxed{-1} \end{aligned}


Reference: Half-angle tangent substitution

Nice solution sir.

Log in to reply

Glad that you like it. Nice problem.

Chew-Seong Cheong - 10 months ago

Log in to reply

Thanks sir.

Using the identity sec 2 x tan 2 x = 1 \sec^2 x-\tan^2 x=1 , we can conclude that sec θ = sec x , tan θ = tan x \sec \theta =\sec x, \tan \theta =-\tan x

Hence, tan 2 θ sec 2 x = ( sec 2 x tan 2 x ) = 1 \tan^2 \theta -\sec^2 x=-(\sec^2 x-\tan^2 x) =\boxed {-1} .

This is ridiculous. Quoting my proposition and saying there is no relation between the two, one ultimately arrives at the same result. For x = θ , tan x = tan ( θ ) = tan θ , sec x = sec ( θ ) = sec θ x=-\theta, \tan x=\tan (-\theta) =-\tan \theta, \sec x=\sec (-\theta) =\sec \theta . Is it due to the fact that I skipped the intermediate steps? If such things continue, then I will have no alternative but leave Brilliant.

Log in to reply

What happened sir?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...