A Sinful Double Improper Integral

Calculus Level 4

Round the exact value of 0 0 sin ( x ) sin ( x + y ) x ( x + y ) d y d x \int_0^{\infty} \int_0^{\infty} \frac{\sin(x)\sin(x+y)}{x(x+y)}\,\mathrm dy\,\mathrm dx to the nearest hundredths place.

Hint: Contour Integration and Complex-Analytic methods were my preferred approaches to solving this problem, although there is another short-cut.

1.20 1.21 1.22 1.23 1.25 1.24

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

taking x + y = t x+y = t

Integral becomes 0 s i n x x ( x s i n t t d t ) d x \mathrm{\int_0^∞ \frac{sinx}{x}( \int_x^∞ \frac{sin t}{t} dt) dx } 0 s i n x x ( 0 s i n t t 0 x s i n t t d t ) d x \mathrm{\int_0^∞ \frac{sinx}{x} (\int_0^∞ \frac{sin t}{t} -\int_0^x \frac{sin t}{t}dt) dx} = π 2 × π 2 0 S i ( x ) s i n x x = \mathrm{\frac {π}{ 2}×\frac{π}{2} - \int_0^∞ Si(x) \frac{sinx}{x}} = π 2 4 0 S i ( x ) S i ( x ) d x = \mathrm{\frac{π^2}{4} -\int_0^∞ Si(x) Si'(x)dx} = π 2 4 1 2 lim x [ S i 2 ( x ) ] = π 2 8 = 1.233 = \mathrm{\frac{π^2}{4} -\frac{1}{2} \lim_{x\rightarrow{∞}}[Si^2 (x)] }= \color{#20A900}\boxed{\frac{π^2}{8} =1.233}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...