A Sinful Sinfonia!

Calculus Level 5

0 π / 3 n = 1 [ sin ( x ) sin ( x + π n ) sin ( x + 2 π n ) sin ( x + ( n 1 ) π n ) ] d x = ln a \displaystyle \int_0^{\pi/3} {\sum_{n=1}^{\infty}{\left[\sin(x) \sin\left(x + \frac{\pi}{n}\right) \sin\left(x + \frac{2\pi}{n}\right) \cdots \sin\left(x + \frac{(n-1)\pi}{n}\right)\right]}\, dx} = \ln a

Find a a .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The key result needed to solve the problem is the following:

k = 0 n 1 sin ( x + k π n ) = sin n x 2 n 1 \prod_{k=0}^{n-1}\sin \left(x+\frac{k\pi}{n}\right)=\frac{\sin nx}{2^{n-1}}

Proof: Denoting a = π / n a=\pi/n , use Euler's formula to obtain: k = 0 n 1 sin ( x + k π n ) = k = 0 n 1 e i ( x + k a ) e i ( x + k a ) 2 i = e i ( n x + ( n 1 ) π / 2 ) ( 2 i ) n k = 0 n 1 ( 1 e i ( 2 x + 2 k a ) ) = e i n x 2 n i e 2 i n x k = 0 n 1 ( e i 2 x e i 2 k π / n ) = e i n x 2 n i ( e 2 i n x 1 ) = sin n x 2 n 1 \prod_{k=0}^{n-1}\sin \left(x+\frac{k\pi}{n}\right)=\prod_{k=0}^{n-1}\frac{e^{i(x+ka)}-e^{-i(x+ka)}}{2i}\\=\frac{e^{i(nx+(n-1)\pi/2)}}{(2i)^n}\prod_{k=0}^{n-1}(1-e^{-i(2x+2ka)})\\=\frac{e^{inx}}{2^n i}e^{-2inx}\prod_{k=0}^{n-1}(e^{i2x}-e^{-i2k\pi/n})\\=\frac{e^{-inx}}{2^n i}(e^{2inx}-1)=\frac{\sin nx}{2^{n-1}} where the penultimate step follows from the identity, x n 1 = k = 0 n 1 ( x e i 2 k π / n ) , x x^n-1=\prod_{k=0}^{n-1}(x-e^{-i2k\pi/n}),\ \forall x , and the last step followd form Euler's formula. \blacksquare

Thus, the desired integral becomes I = 0 π / 3 n = 1 sin n x 2 n 1 d x I=\int_{0}^{\pi/3}\sum_{n=1}^{\infty}\frac{\sin nx}{2^{n-1}}dx Now, defining f N ( x ) = n = 1 N sin n x 2 n 1 f_N(x)=\sum_{n=1}^N \frac{\sin nx}{2^{n-1}} , it is easy to see that f N f f_N\to f uniformly where f ( x ) = n = 1 sin n x 2 n 1 = 2 ( e i x / 2 1 e i x / 2 ) f(x)=\sum_{n=1}^{\infty} \frac{\sin nx}{2^{n-1}}=2\Im\left(\frac{e^{ix}/2}{1-e^{ix}/2}\right) . We observe that I = 0 π / 3 f ( x ) d x I=\int_{0}^{\pi/3}f(x) dx . Since f n n 1 1 2 n 1 = 2 |f_n|\le \sum_{n\ge 1}\frac{1}{2^{n-1}}=2 , using Bounded Convergence Theorem , we can write, I = lim N 0 π / 3 f N ( x ) d x = lim N 0 π / 3 n = 1 N sin n x 2 n 1 d x = lim N n = 1 N 0 π / 3 sin n x 2 n 1 I=\lim_{N\to \infty }\int_{0}^{\pi/3} f_N(x) dx=\lim_{N\to \infty} \int_{0}^{\pi/3}\sum_{n=1}^N \frac{\sin nx}{2^{n-1}} dx\\=\lim_{N\to \infty} \sum_{n=1}^N\int_{0}^{\pi/3} \frac{\sin nx}{2^{n-1}} Now, 0 π / 3 sin n x d x = 1 cos ( n π / 3 ) n \int_{0}^{\pi/3}{\sin nx} dx=\frac{1-\cos(n\pi/3)}{n} Thus, I = n 1 1 cos ( n π / 3 ) n 2 n 1 = 2 ln 2 + 2 ( ln ( 1 e i π / 3 / 2 ) ) = ln 4 + ln ( ( 1 1 / 4 ) 2 + ( 3 / 4 ) 2 ) = ln ( 3 ) I=\sum_{n\ge 1}\frac{1-\cos(n\pi/3)}{n\cdot 2^{n-1}}=2\ln 2+2\Re\left(\ln(1-e^{i\pi/3}/2)\right)=\ln 4+\ln\left((1-1/4)^2+(\sqrt{3}/4)^2\right)=\ln(3) Thus giving a = 3 a=\boxed{3} .

As an alternative, we may see that the sum

n = 1 s i n n x 2 n 1 = 2 ( n = 1 e n i x 2 n ) = ( 2 e i x 2 ( 1 e i x 2 ) = ( 4 e i x 2 e i x ) = 4 s i n x 5 4 c o s x N o w , 4 s i n x 5 4 c o s x d x = 1 u d u , w h e r e u = 5 4 c o s x = ln ( 5 4 c o s x ) 0 π / 3 4 s i n x 5 4 c o s x = l n 3 \sum _{ n=1 }^{ \infty }{ \frac { sin\quad nx }{ { 2 }^{ n-1 } } } =\quad 2\Im (\sum _{ n=1 }^{ \infty }{ \frac { { e }^{ nix } }{ { 2 }^{ n } } } )\quad =\quad \Im (\frac { {2 e }^{ ix } }{ 2(1-\frac { { e }^{ ix } }{ 2 } ) } =\Im (\frac { { 4e }^{ ix } }{ 2-{ e }^{ ix } } )=\frac { 4sinx }{ 5-4cosx } \\ Now,\quad \int { \frac { 4sinx }{ 5-4cosx } } dx\quad =\quad \int { \frac { 1 }{ u } } du,\quad where\quad u=\quad 5-4cosx\quad =\quad \ln { (5-4cosx) } \\ \therefore \quad \int _{ 0 }^{ \pi /3 }{ \frac { 4sinx }{ 5-4cosx } } =\quad \boxed { ln\quad 3 }

Aditya Dhawan - 4 years, 7 months ago

Log in to reply

Yes that's another good approach too.

Samrat Mukhopadhyay - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...