∫ 0 π / 3 n = 1 ∑ ∞ [ sin ( x ) sin ( x + n π ) sin ( x + n 2 π ) ⋯ sin ( x + n ( n − 1 ) π ) ] d x = ln a
Find a .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
As an alternative, we may see that the sum
∑ n = 1 ∞ 2 n − 1 s i n n x = 2 ℑ ( ∑ n = 1 ∞ 2 n e n i x ) = ℑ ( 2 ( 1 − 2 e i x ) 2 e i x = ℑ ( 2 − e i x 4 e i x ) = 5 − 4 c o s x 4 s i n x N o w , ∫ 5 − 4 c o s x 4 s i n x d x = ∫ u 1 d u , w h e r e u = 5 − 4 c o s x = ln ( 5 − 4 c o s x ) ∴ ∫ 0 π / 3 5 − 4 c o s x 4 s i n x = l n 3
Problem Loading...
Note Loading...
Set Loading...
The key result needed to solve the problem is the following:
k = 0 ∏ n − 1 sin ( x + n k π ) = 2 n − 1 sin n x
Proof: Denoting a = π / n , use Euler's formula to obtain: k = 0 ∏ n − 1 sin ( x + n k π ) = k = 0 ∏ n − 1 2 i e i ( x + k a ) − e − i ( x + k a ) = ( 2 i ) n e i ( n x + ( n − 1 ) π / 2 ) k = 0 ∏ n − 1 ( 1 − e − i ( 2 x + 2 k a ) ) = 2 n i e i n x e − 2 i n x k = 0 ∏ n − 1 ( e i 2 x − e − i 2 k π / n ) = 2 n i e − i n x ( e 2 i n x − 1 ) = 2 n − 1 sin n x where the penultimate step follows from the identity, x n − 1 = k = 0 ∏ n − 1 ( x − e − i 2 k π / n ) , ∀ x , and the last step followd form Euler's formula. ■
Thus, the desired integral becomes I = ∫ 0 π / 3 n = 1 ∑ ∞ 2 n − 1 sin n x d x Now, defining f N ( x ) = ∑ n = 1 N 2 n − 1 sin n x , it is easy to see that f N → f uniformly where f ( x ) = ∑ n = 1 ∞ 2 n − 1 sin n x = 2 ℑ ( 1 − e i x / 2 e i x / 2 ) . We observe that I = ∫ 0 π / 3 f ( x ) d x . Since ∣ f n ∣ ≤ ∑ n ≥ 1 2 n − 1 1 = 2 , using Bounded Convergence Theorem , we can write, I = N → ∞ lim ∫ 0 π / 3 f N ( x ) d x = N → ∞ lim ∫ 0 π / 3 n = 1 ∑ N 2 n − 1 sin n x d x = N → ∞ lim n = 1 ∑ N ∫ 0 π / 3 2 n − 1 sin n x Now, ∫ 0 π / 3 sin n x d x = n 1 − cos ( n π / 3 ) Thus, I = n ≥ 1 ∑ n ⋅ 2 n − 1 1 − cos ( n π / 3 ) = 2 ln 2 + 2 ℜ ( ln ( 1 − e i π / 3 / 2 ) ) = ln 4 + ln ( ( 1 − 1 / 4 ) 2 + ( 3 / 4 ) 2 ) = ln ( 3 ) Thus giving a = 3 .