A siny limit

Calculus Level 5

lim x 1 ( a x + sin ( x 1 ) + a x + sin ( x 1 ) 1 ) 1 x 1 x = 1 4 \large \lim_{x\to 1}\left( \frac{-ax+\sin(x-1)+a}{x+\sin(x-1)-1} \right)^{\frac{1-x}{1-\sqrt{x}}} = \frac{1}{4}

Find the value of the non-zero constant a a satisfying the equation above.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

1 4 = lim x 1 ( a x + sin ( x 1 ) + a x + sin ( x 1 ) 1 ) 1 x 1 x = lim x 1 ( a x + sin ( x 1 ) + a x + sin ( x 1 ) 1 ) ( 1 x ) ( 1 + x ) 1 x = lim x 1 ( a x + sin ( x 1 ) + a x + sin ( x 1 ) 1 ) 1 + x = ( lim x 1 a x + sin ( x 1 ) + a x + sin ( x 1 ) 1 ) 2 ± 1 2 = lim x 1 a x + sin ( x 1 ) + a x + sin ( x 1 ) 1 A 0/0 case, L’H o ˆ pital’s rule applies. = lim x 1 a + cos ( x 1 ) 1 + cos ( x 1 ) Differentiate up and down w.r.t. x = a + 1 2 \begin{aligned} \frac 14 & = \lim_{x \to 1} \left(\frac {-ax+\sin(x-1)+a}{x+\sin(x-1)-1} \right)^{\frac {1-x}{1-\sqrt x}} \\ & = \lim_{x \to 1} \left(\frac {-ax+\sin(x-1)+a}{x+\sin(x-1)-1} \right)^{\frac {(1-\sqrt x)(1+\sqrt x)}{1-\sqrt x}} \\ & = \lim_{x \to 1} \left(\frac {-ax+\sin(x-1)+a}{x+\sin(x-1)-1} \right)^{1+\sqrt x} \\ & = \left(\lim_{x \to 1} \frac {-ax+\sin(x-1)+a}{x+\sin(x-1)-1} \right)^2 \\ \implies \pm \frac 12 & = \lim_{x \to 1} \frac {-ax+\sin(x-1)+a}{x+\sin(x-1)-1} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{x \to 1} \frac {-a+\cos (x-1)}{1+\cos (x-1)} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = \frac {-a+1}2 \end{aligned}

{ a + 1 = 1 a = 0 rejected a + 1 = 1 a = 2 accepted \implies \begin{cases} -a+1 = 1 & \implies a = 0 & \color{#D61F06} \text{rejected} \\ -a+1 = -1 & \implies a = \boxed{2} & \color{#3D99F6} \text{accepted} \end{cases}

@Chinmay Sangawadekar , it should be "non-zero constant" instead of "non-constant".

Chew-Seong Cheong - 4 years, 5 months ago

Log in to reply

sir but i think zero is the correct answer to the problem . the base will be negative if a = 2

Prakhar Bindal - 4 years, 5 months ago

3 pending reports

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...