x → 1 lim ( x + sin ( x − 1 ) − 1 − a x + sin ( x − 1 ) + a ) 1 − x 1 − x = 4 1
Find the value of the non-zero constant a satisfying the equation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Chinmay Sangawadekar , it should be "non-zero constant" instead of "non-constant".
Log in to reply
sir but i think zero is the correct answer to the problem . the base will be negative if a = 2
Problem Loading...
Note Loading...
Set Loading...
4 1 ⟹ ± 2 1 = x → 1 lim ( x + sin ( x − 1 ) − 1 − a x + sin ( x − 1 ) + a ) 1 − x 1 − x = x → 1 lim ( x + sin ( x − 1 ) − 1 − a x + sin ( x − 1 ) + a ) 1 − x ( 1 − x ) ( 1 + x ) = x → 1 lim ( x + sin ( x − 1 ) − 1 − a x + sin ( x − 1 ) + a ) 1 + x = ( x → 1 lim x + sin ( x − 1 ) − 1 − a x + sin ( x − 1 ) + a ) 2 = x → 1 lim x + sin ( x − 1 ) − 1 − a x + sin ( x − 1 ) + a = x → 1 lim 1 + cos ( x − 1 ) − a + cos ( x − 1 ) = 2 − a + 1 A 0/0 case, L’H o ˆ pital’s rule applies. Differentiate up and down w.r.t. x
⟹ { − a + 1 = 1 − a + 1 = − 1 ⟹ a = 0 ⟹ a = 2 rejected accepted