A sleep into Mathematical Madness

Algebra Level 4

If a complex number α \alpha satisfies the equation α 3 α 2 2 α + 1 = 0 , \alpha^3-\alpha^2-2\alpha+1=0, where α = x + 1 x \alpha=x+\frac{1}{x} for some complex number x x , then what is the value of the expression below? x 64 2 x 52 + 3 x 43 + 2 x 38 2 x 29 + 5 x 17 + 5 x 10 7 x 7 + 7 x^{64}-2x^{52}+3x^{43}+2x^{38}-2x^{29}+5x^{17}+5x^{10}-7x^7+7


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sanjeet Raria
Dec 26, 2014

We have α 3 α 2 2 α + 1 = 0 \large \alpha^3-\alpha^2-2\alpha+1=0

Now plugging α = ( x + 1 x ) \alpha=(x+\frac{1}{x}) we finally get ( x 3 + 1 x 3 ) ( x 2 + 1 x 2 ) + ( x + 1 x ) 1 = 0 (x^3+\frac{1}{x^3})- (x^2+\frac{1}{x^2})+ (x+\frac{1}{x})-1=0\space Multiplying throughout by x 3 x^3 we get x 6 x 5 + x 4 x 3 + x 2 x + 1 = 0 x^6-x^5+x^4-x^3+x^2-x+1=0 Multiplying again throughout by ( x + 1 ) (x+1) we get, ( x + 1 ) ( x 6 x 5 + x 4 x 3 + x 2 x + 1 ) = 0 (x+1)(x^6-x^5+x^4-x^3+x^2-x+1)=0 x 7 + 1 = 0 x 7 = 1 \Rightarrow x^7+1=0 \Rightarrow x^7=-1

Now using this in our required expression x 64 2 x 52 + 3 x 43 + 2 x 38 2 x 29 + 5 x 17 + 5 x 10 7 x 7 + 7 x^{64}-2x^{52}+3x^{43}+2x^{38}-2x^{29}+5x^{17}+5x^{10}-7x^7+7 we simply it as x + 2 x 3 + 3 x 2 x 3 2 x + 5 x 3 5 x 3 7 ( 1 ) + 7 = 14 -x+2x^3+3x-2x^3-2x+5x^3-5x^3-7(-1)+7=\boxed{14}

Nice solution. I did the same way. Keep it up Pumba. :)

Sandeep Bhardwaj - 6 years, 5 months ago

This question is beautiful.

Julian Poon - 6 years, 5 months ago

Nicely explained.I did the same.

Gautam Sharma - 6 years, 4 months ago

I am so stupid! I did the same thing but I misread the question. I took the coefficient of alpha^2 in the first equation as +1 instead of -1 and complicated up the whole thing >_<

Aditya Pappula - 5 years, 11 months ago

I did the same way as you did in both madnesses @Sanjeet Raria

Aakash Khandelwal - 5 years, 10 months ago

Log in to reply

Well done! I'm gonna post some more madness problems. You might like solving them too.

Sanjeet Raria - 5 years, 10 months ago

didn't get the multiplying by (x+1) part, wasn't able to think of it. smart thinking!

Pil Pinas - 4 years, 12 months ago

Isn't it supposed.to be (x + 1/x)^3 and not x^3 + 1/x^3

Ramesh Iyer - 3 months, 3 weeks ago
Julian Poon
Dec 30, 2014

This is a detailed elaboration on Sanjeet Raria's solution on why ( x 3 + 1 x 3 ) ( x 2 + 1 x 2 ) + ( x + 1 x ) 1 = 0 \left( { x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } \right) -\left( { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \right) +\left( { x }+\frac { 1 }{ { x } } \right) -1=0 First, lets expand ( x + 1 x ) 2 { \left( x+\frac { 1 }{ x } \right) }^{ 2 } and ( x + 1 x ) 3 { \left( x+\frac { 1 }{ x } \right) }^{ 3 } .

( x + 1 x ) 3 = x 3 + 1 x 3 + 3 ( x + 1 x ) = α 3 ( x + 1 x ) 2 = x 2 + 1 x 2 + 2 = α 2 { \left( x+\frac { 1 }{ x } \right) }^{ 3 }={ x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } +3\left( { x }+\frac { 1 }{ { x } } \right) ={ \alpha }^{ 3 }\\ { \left( x+\frac { 1 }{ x } \right) }^{ 2 }={ x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } +2={ \alpha }^{ 2 }

I hope you know where this is going. Now, we are going to express the polynomial in the question: α 3 α 2 2 α + 1 { \alpha }^{ 3 }-{ \alpha }^{ 2 }-2{ \alpha }+1 in terms of x 3 + 1 x 3 , x 2 + 1 x 2 , and x + 1 x { x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } }, \quad { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } , \text{ and } { x }+\frac { 1 }{ { x } }

So, x 2 + 1 x 2 = α 2 2 x 3 + 1 x 3 = α 3 3 α { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } ={ \alpha }^{ 2 }-2\\ { x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } ={ \alpha }^{ 3 }-3{ \alpha } And therefore, ( x 3 + 1 x 3 ) ( x 2 + 1 x 2 ) + ( x + 1 x ) 1 = ( α 3 3 α ) ( α 2 2 ) + α 1 = α 3 α 2 2 α + 1 = 0 \left( { x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } \right) -\left( { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \right) +\left( { x }+\frac { 1 }{ { x } } \right) -1 = ({ \alpha }^{ 3 }-3{ \alpha })-({ \alpha }^{ 2 }-2)+\alpha -1={ \alpha }^{ 3 }-{ \alpha }^{ 2 }-2{ \alpha }+1=\boxed{0}

another way to find the equation for x x is : we have α x = x 2 + 1 \alpha x=x^2+1 and x 3 α 3 x ( x α ) 2 2 x 2 ( x α ) + x 3 = 0 x^3\alpha^3-x(x\alpha)^2-2x^2(x\alpha)+x^3=0 so ( x 2 + 1 ) 3 x ( x 2 + 1 ) 2 2 x 2 ( x 2 + 1 ) + x 3 = 0 (x^2+1)^3-x(x^2+1)^2-2x^2(x^2+1)+x^3=0

Cuize Han - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...