A Slight Deformation 2

Geometry Level 4

I had a nice right triangle with rational sides a a , b b , and c c such that a + b c = 12 a + b - c = 12 , but someone squeezed it, turning it to an acute one. However, the ex-legs have maintained their lengths ( a a and b b ) and, surprisingly, the inradius hasn’t changed either. At the same time, the area of the triangle has lost 3 2 ( 53 1657 ) \frac{3}{2}(53 - \sqrt{1657}) square units. Find the length of the longer leg of the original right triangle.

Inspiration


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First, we find the inradius, from the right triangle: r = a + b c 2 = 6 r = \dfrac{{a + b - c}}{2} = 6 .

Now we move to the acute A B C \triangle ABC . Denote I I , D D , E E , F F , the incenter and the contact points of the incircle with the triangle, as seen on the figure. Let C B = a CB=a , C A = b CA=b , ( a < b ) (a<b) , C D = C F = x CD=CF=x , I C D = I C F = θ \angle ICD=\angle ICF=\theta and area of A B C = A \triangle ABC=A .

The semiperimeter of A B C \triangle ABC is s = A B + B C + C A 2 = a + b + ( a + b 2 x ) 2 = a + b x ( 1 ) s = \dfrac{{AB + BC + CA}}{2} = \dfrac{{a + b + \left( {a + b - 2x} \right)}}{2} = a + b - x \ \ \ (1)

a + b c = 12 a + b = 12 + c ( 2 ) a + b - c = 12 \Rightarrow a + b = 12 + c \ \ \ (2)
Hence, A = s r = ( a + b x ) 6 A = 6 ( 12 + c x ) ( 3 ) A = s \cdot r = \left( {a + b - x} \right) \cdot 6 \Rightarrow A = 6\left( {12 + c - x} \right) \ \ \ (3)

( 2 ) ( a + b ) 2 = ( 12 + c ) 2 a 2 + b 2 + 2 a b = ( 12 + c ) 2 c 2 + 2 a b = ( 12 + c ) 2 a b = 72 + 12 c ( 4 ) \left( 2 \right) \Rightarrow {\left( {a + b} \right)^2} = {\left( {12 + c} \right)^2} \Rightarrow {a^2} + {b^2} + 2ab = {\left( {12 + c} \right)^2} \Rightarrow {c^2} + 2ab = {\left( {12 + c} \right)^2} \Rightarrow ab = 72 + 12c \ \ \ (4)

Again, A = 1 2 C B C A sin ( 2 θ ) = 1 2 a b sin ( 2 θ ) = ( 4 ) 1 2 ( 72 + 12 c ) sin ( 2 θ ) A = 6 ( 6 + c ) sin ( 2 θ ) ( 5 ) A = \frac{1}{2}CB \cdot CA \cdot \sin \left( {2\theta } \right) = \frac{1}{2}a \cdot b \cdot \sin \left( {2\theta } \right)\mathop = \limits^{\left( 4 \right)} \frac{1}{2}\left( {72 + 12c} \right) \cdot \sin \left( {2\theta } \right) \Rightarrow A = 6\left( {6 + c} \right) \cdot \sin \left( {2\theta } \right) \ \ \ (5)

( 3 ) , ( 5 ) 12 + c x = ( 6 + c ) sin ( 2 θ ) ( 6 ) \left( 3 \right),\left( 5 \right) \Rightarrow 12 + c - x = \left( {6 + c} \right)\sin \left( {2\theta } \right) \ \ \ (6)

Alongside,
sin ( 2 θ ) = 2 cot θ 1 + cot 2 θ ( 7 ) \sin \left( {2\theta } \right) = \dfrac{{2\cot \theta }}{{1 + {{\cot }^2}\theta }} \ \ \ (7)

From C I D \triangle CID we see that cot θ = x 6 ( 8 ) \cot \theta = \dfrac{x}{6} \ \ \ (8) , hence ( 7 ) sin ( 2 θ ) = 12 x 36 + x 2 ( 9 ) \left( 7 \right) \Rightarrow \sin \left( {2\theta } \right) = \dfrac{{12x}}{{36 + {x^2}}} \ \ \ (9)

Combining ( 6 ) (6) , ( 7 ) (7) , ( 8 ) (8) , ( 9 ) (9) and solving for c c we get c = x 2 6 c + 72 x 6 ( 10 ) c = \dfrac{{{x^2} - 6c + 72}}{{x - 6}} \ \ \ (10)

Since the area loss is 3 2 ( 53 1657 ) \dfrac{3}{2}\left( {53 - \sqrt {1657} } \right) , we have 1 2 a b 6 ( 6 + c ) sin ( 2 θ ) = 3 2 ( 53 1657 ) \dfrac{1}{2}ab - 6\left( {6 + c} \right) \cdot \sin \left( {2\theta } \right) = \dfrac{3}{2}\left( {53 - \sqrt {1657} } \right) and using ( 4 ) (4) , ( 9 ) (9) and ( 10 ) (10) , we find x = 77 1657 4 x = \dfrac{{77 - \sqrt {1657} }}{4} .
We plug this in ( 10 ) (10) to get c = 65 2 . c = \dfrac{{65}}{2}.

Solving simultaneously ( 2 ) (2) and ( 4 ) (4) we find a = 33 2 a = \dfrac{{33}}{2} , b = 28 b=\boxed{28}

David Vreken
Jul 14, 2020

For the first (right) triangle, the semi-perimeter is s 1 = 1 2 ( a + b + c ) s_1 = \frac{1}{2}(a + b + c) , and the area is A 1 = 1 2 a b A_1 = \frac{1}{2}ab . For the second (acute) triangle, the semi-perimeter is s 2 = 1 2 ( a + b + x ) s_2 = \frac{1}{2}(a + b + x) , and the area is A 2 = 1 4 ( a + b + x ) ( a + b + x ) ( a b + x ) ( a + b x ) A_2 = \frac{1}{4}\sqrt{(a + b + x)(-a + b + x)(a - b + x)(a + b - x)} .

Using the equation r = A s r = \frac{A}{s} we have r = A 1 s 1 = A 2 s 2 r = \frac{A_1}{s_1} = \frac{A_2}{s_2} , so 1 2 a b 1 2 ( a + b + c ) = 1 4 ( a + b + x ) ( a + b + x ) ( a b + x ) ( a + b x ) 1 2 ( a + b + x ) \frac{\frac{1}{2}ab}{\frac{1}{2}(a + b + c)} = \frac{\frac{1}{4}\sqrt{(a + b + x)(-a + b + x)(a - b + x)(a + b - x)}}{\frac{1}{2}(a + b + x)} , which rearranges to:

( a + b + c ) 2 ( x c ) ( x + a + b ) ( x 1 2 ( a + b c + q ) ) ( x 1 2 ( a + b c q ) ) = 0 (a + b + c)^2(x - c)(x + a + b)(x - \frac{1}{2}(a + b - c + \sqrt{q}))(x - \frac{1}{2}(a + b - c - \sqrt{q})) = 0

for q = c 2 + 10 ( a + b ) c 7 ( a + b ) 2 q = c^2 + 10(a + b)c - 7(a + b)^2 , and has one solution x = 1 2 ( a + b c + q ) x = \frac{1}{2}(a + b - c + \sqrt{q}) for 0 < x < c 0 < x < c .

The difference of areas is then 3 2 ( 53 + 1657 ) = A 1 A 2 = 1 2 a b 1 4 ( a + b + x ) ( a + b + x ) ( a b + x ) ( a + b x ) \frac{3}{2}(53 + \sqrt{1657}) = A_1 - A_2 = \frac{1}{2}ab - \frac{1}{4}\sqrt{(a + b + x)(-a + b + x)(a - b + x)(a + b - x)} . Substituting the x x and q q equations above and simplifying gives 3 2 ( 53 + 1657 ) = 1 8 ( a + b c ) ( 3 c a b c 2 + 10 ( a + b ) c 7 ( a + b ) 2 ) \frac{3}{2}(53 + \sqrt{1657}) = \frac{1}{8}(a + b - c)(3c - a - b - \sqrt{c^2 + 10(a + b)c - 7(a + b)^2}) . Equating rational parts tells us 3 2 53 = 1 8 ( a + b c ) ( 3 c a b ) \frac{3}{2}\cdot 53 = \frac{1}{8}(a + b - c)(3c - a - b) , and substituting a + b c = 12 a + b - c = 12 and simplifying gives 3 c a b = 53 3c - a - b = 53 . Combining a + b c = 12 a + b - c = 12 and 3 c a b = 53 3c - a - b = 53 gives us c = 65 2 c = \frac{65}{2} and a + b = 89 2 a + b = \frac{89}{2} .

Using the Pythagorean Theorem on the first (right) triangle now gives a 2 + b 2 = ( 65 2 ) 2 a^2 + b^2 = (\frac{65}{2})^2 . Combining this with a + b = 89 2 a + b = \frac{89}{2} gives 2 a 2 89 a + 924 = 0 2a^2 - 89a + 924 = 0 and solves to a = 28 a = 28 or a = 33 2 a = \frac{33}{2} , which are the values of the two legs of the right triangle, the longer one being 28 \boxed{28} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...