A small red segment and an angle

Geometry Level 5

The following figure shows a cyclic quadrilateral A B C D ABCD whose diagonals A C AC and B D BD form an acute angle of 6 3 63^\circ . Points M Μ and N N are the feet of the perpendicular lines from vertex A A to line segments B C BC and B D BD respectively. B D BD is a diameter of the circumscribed circle.

If M N MN is a line segment of length 2 \sqrt 2 , perpendicular to A C AC , calculate the area of the quadrilateral A B C D ABCD .

If the area in question is given by the expression ( a × φ + b + c ) 2 {\left( {\sqrt {a \times \varphi + b} + c} \right)^2} , where a a , b b , and c c are natural numbers and φ φ is the golden ratio , find a + b + c a + b + c .

Challenging restriction (optional): No coordinate geometry, no trigonometry. Just plain Euclidean Geometry.

Inspiration


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

It’s not going to be short, so here is an outline of the steps that follow:

Step 1 : A A , B B , M M and N N are homocyclic points.
Step 2 : N N is the center of the circumscribed circle of A B C D ABCD .
Step 3 : C B D = 1 8 \angle CBD = 18^\circ (the orange one), hence M N MN and C D CD can be considered as sides of inscribed regular decagons.
Step 4 : Relate the side of a regular decagon with its circumradius.
Step 5 : Calculate the lengths of the radii of the two circles.
Step 6 : Calculate the area of A B C D ABCD as the sum of the areas of A B D \vartriangle ABD and B C D \vartriangle BCD .


Step 1 :
B M A = 9 0 = B N A \angle BMA = 90^\circ = \angle BNA , hence A A , B B , M M and N N are homocyclic points (circle c 1 c_1 ) and A B AB is a diameter of this circle.

Step 2 :
B D BD is a diameter of the circumscribed circle of A B C D ABCD (circle c 2 c_2 ), hence B A D = B C D = 9 0 \angle BAD = \angle BCD = 90^\circ .
θ 1 = θ 2 {\theta _1}^\circ = {\theta _2}^\circ (inscribed angles subtended by the same arc A D \overset\frown{AD} ).
θ 2 = θ 3 {\theta _2}^\circ = {\theta _3}^\circ (similar reason).
Hence, θ 1 = θ 3 {\theta _1}^\circ = {\theta _3}^\circ .

Consequently, M C E = 9 0 θ 1 = 9 0 θ 3 = C M E \angle MCE = 90^\circ - {\theta _1}^\circ = 90^\circ - {\theta _3}^\circ = \angle CME . Since M C E \angle MCE and C M E \angle CME are the acute angles of the right-angled E M C \vartriangle EMC , they both equal to 4 5 45^\circ . Therefore, θ 2 = θ 1 = 9 0 ω 1 = 9 0 4 5 = 4 5 {\theta _2}^\circ = {\theta _1}^\circ = 90^\circ - {\omega _1}^\circ = 90^\circ - 45^\circ = 45^\circ and so the right-angled A B D \vartriangle ABD is an isosceles triangle. Since A N AN is a height of A B D \vartriangle ABD , it is the perpendicular bisector of B D BD and N N is the midpoint of diameter B D BD , thus it is the center of the circle c 2 c_2 .

Step 3 :
On F C D \vartriangle FCD : D + C + F = 18 0 D + 4 5 + 6 3 = 18 0 D = 7 2 \angle D + \angle C + \angle F = 180^\circ \Rightarrow \angle D + 45^\circ + 63^\circ = 180^\circ \Rightarrow \angle D = 72^\circ
On B C D \vartriangle BCD : B + C + D = 18 0 B + 9 0 + 7 2 = 18 0 B = 1 8 \angle B + \angle C + \angle D = 180^\circ \Rightarrow \angle B + 90^\circ + 72^\circ = 180^\circ \Rightarrow \angle B = 18^\circ

Since C B D = 1 8 \angle CBD = 18^\circ , the chords M N MN and C D CD can be considered as sides of inscribed regular decagons in circles c 1 c_1 an c 2 c_2 respectively.

Step 4 :

THEOREM
The relation between the side s s of a regular decagon and its circumradius R R is R = s φ R = s \cdot \varphi , where φ = 5 + 1 2 \varphi = \frac{{\sqrt 5 + 1}}{2} is the golden ratio.

PROOF
Let A B = s AB=s be the side of a regular decagon inscribed in the circle ( O , R ) \left( {O,R} \right) .
The central angle of the regular decagon is A O B = 36 0 10 = 3 6 \angle AOB = \frac{{360^\circ }}{{10}} = 36^\circ , hence O A B = O B A = 7 2 \angle OAB = \angle OBA = 72^\circ .

Draw A C AC , the angle bisector of O A B \angle OAB .
We notice that both C O A \vartriangle COA and A B C \vartriangle ABC are isosceles, since C A O = 3 6 = A O C \angle CAO = 36^\circ = \angle AOC and A C B = C A O + 3 6 = 7 2 = O B A \angle ACB = \angle CAO + 36^\circ = 72^\circ = \angle OBA .
Hence, A B = A C = C O = s AB=AC=CO=s .

By angle bisector theorem on O A B \vartriangle OAB we get
A B A O = C B C O s R = R s s s 2 + R s R 2 = 0. \frac{{AB}}{{AO}} = \frac{{CB}}{{CO}} \Leftrightarrow \frac{s}{R} = \frac{{R - s}}{s} \Leftrightarrow {s^2} + Rs - {R^2} = 0.

That gives
s = R ± 5 R 2 2 = R 1 ± 5 2 s > 0 s = R 1 + 5 2 R = s 2 1 + 5 = s 1 + 5 2 R = s φ \begin{gathered} s = \frac{{ - R \pm \sqrt {5{R^2}} }}{2} = R \cdot \frac{{ - 1 \pm \sqrt 5 }}{2} \\ \mathop \Rightarrow \limits^{s > 0} s = R \cdot \frac{{ - 1 + \sqrt 5 }}{2} \Leftrightarrow R = s \cdot \frac{2}{{ - 1 + \sqrt 5 }} = s \cdot \frac{{1 + \sqrt 5 }}{2} \Leftrightarrow R = s \cdot \varphi \\ \end{gathered}

Step 5 :
Let R 1 {R_1} , R 2 {R_2} be the radii of circles c 1 c_1 and c 2 c_2 respectively. Label s 1 = M N = 2 {s_1} = MN = \sqrt 2 and s 2 = C D {s_2} = CD .
By the theorem of step 4, we have R 1 = s 1 φ R 1 = φ 2 . ( 1 ) {R_1} = {s_1} \cdot \varphi \Rightarrow {R_1} = \varphi \cdot \sqrt 2. \ \ \ \ \ (1)

By Pythagoras’ theorem on A B N \vartriangle ABN , A B 2 = N A 2 + N B 2 ( 2 R 1 ) 2 = 2 R 2 2 R 2 = R 1 2 ( 1 ) R 2 = φ 2 2 R 2 = 2 φ A{B^2} = N{A^2} + N{B^2} \Rightarrow {\left( {2{R_1}} \right)^2} = 2{R_2}^2 \Rightarrow {R_2} = {R_1} \cdot \sqrt 2 \mathop \Rightarrow \limits^{\left( 1 \right)} {R_2} = \varphi \cdot {\sqrt 2 ^2} \Rightarrow {R_2} = 2\varphi .

Step 6 :
By similarity of regular decagons s 2 s 1 = R 2 R 1 s 2 = s 1 R 2 R 1 s 2 = 2 2 s 2 = 2 \frac{{{s_2}}}{{{s_1}}} = \frac{{{R_2}}}{{{R_1}}} \Rightarrow {s_2} = {s_1} \cdot \frac{{{R_2}}}{{{R_1}}} \Rightarrow {s_2} = \sqrt 2 \cdot \sqrt 2 \Rightarrow {s_2} = 2 .

By Pythagoras’ theorem on B C D \vartriangle BCD ,
B D 2 = B C 2 + C D 2 B C 2 = B D 2 C D 2 B C 2 = ( 2 R 2 ) 2 2 2 = ( 4 φ ) 2 4 = 16 φ 2 4 \begin{gathered} B{D^2} = B{C^2} + C{D^2} \Rightarrow B{C^2} = B{D^2} - C{D^2} \\ \Rightarrow B{C^2} = {\left( {2{R_2}} \right)^2} - {2^2} = {\left( {4\varphi } \right)^2} - 4 = 16{\varphi ^2} - 4 \\ \end{gathered} .

Since φ 2 = φ + 1 {\varphi ^2} = \varphi + 1 , we get B C 2 = 16 ( φ + 1 ) 4 = 16 φ + 12 B C = 2 4 φ + 3 B{C^2} = 16\left( {\varphi + 1} \right) - 4 = 16\varphi + 12 \Rightarrow BC = 2\sqrt {4\varphi + 3} .

Now we have
area of A B C D = area of A B D + area of B C D = 1 2 A B A D + 1 2 B C C D = 1 2 ( 2 R 1 ) 2 + 1 2 B C 2 = 1 2 8 φ 2 + 1 2 2 4 φ + 3 2 = 4 ( φ + 1 ) + 2 4 φ + 3 = 4 φ + 4 + 2 4 φ + 3 = ( 4 φ + 3 ) + 2 4 φ + 3 + 1 = ( 4 φ + 3 + 1 ) 2 \begin{gathered} {\text{area of }} \vartriangle ABCD = {\text{area of }} \vartriangle ABD + {\text{area of }} \vartriangle BCD \\ = \frac{1}{2}AB \cdot AD + \frac{1}{2}BC \cdot CD \\ = \frac{1}{2}{\left( 2R_1\right)}^2 + \frac{1}{2}BC \cdot 2 \\ = \frac{1}{2} \cdot 8{\varphi ^2} + \frac{1}{2} \cdot 2\sqrt {4\varphi + 3} \cdot 2 \\ = 4\left( {\varphi + 1} \right) + 2\sqrt {4\varphi + 3} \\ = 4\varphi + 4 + 2\sqrt {4\varphi + 3} \\ = \left( {4\varphi + 3} \right) + 2\sqrt {4\varphi + 3} + 1 \\ = {\left( {\sqrt {4\varphi + 3} + 1} \right)^2} \\ \end{gathered} .

For the answer, a = 4 a=4 , b = 3 b=3 , c = 1 c=1 , thus a + b + c = 8 a+b+c=\boxed{8} .

Wow, this is fantastic! Thanks for sharing.

David Vreken - 1 year, 4 months ago

Log in to reply

Thanks David. Now, I will tackle your Ant Brilli's new adventure!!

Thanos Petropoulos - 1 year, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...