A small sum of digits ? Really?

Level 2

If x = 9 a b x = 9ab where a a is an integer consists of a sequence of 2014 2014 eights and the integer b b consists of a sequence of 2014 2014 fives. Then the sum of digits of x x is ?


The answer is 18126.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anirudh Sreekumar
Dec 10, 2017

x = 9 a b = 9 ( 1 0 2014 1 ) × 8 9 × ( 1 0 2014 1 ) × 5 9 = ( 1 0 2014 1 ) 2 × 40 9 = ( 1 0 4029 2 × 1 0 2015 + 10 ) × 4 9 = 4 9 ( 99999 \substack 2013 9s 8 00000 \substack 2013 0s 10 ) = 4 ( 11111 \substack 2013 1s 0 888888 \substack 2013 8s 90 ) = ( 44444 \substack 2013 4s 3 555555 \substack 2013 5s 60 ) S ( n ) = 2013 ( 5 + 4 ) + 6 + 3 = 2014 × 9 = 18126 \begin{aligned}x&=9ab\\ &=9\dfrac{(10^{2014}-1)\times 8}{9}\times\dfrac{(10^{2014}-1)\times 5}{9}\\ &=\dfrac{(10^{2014}-1)^2\times 40}{9}\\ &=\dfrac{(10^{4029}-2\times10^{2015}+10)\times4}{9}\\ &=\dfrac{4}{9}\left(\underbrace{99999\cdots}_{\substack{2013\text{ 9s}}}8\underbrace{\cdots00000}_{\substack{2013\text{ 0s}}}10\right)\\ &=4\left(\underbrace{11111\cdots}_{\substack{2013\text{ 1s}}}0\underbrace{\cdots888888}_{\substack{2013\text{ 8s}}}90\right)\\ &=\left(\underbrace{44444\cdots}_{\substack{2013\text{ 4s}}}3\underbrace{\cdots555555}_{\substack{2013\text{ 5s}}}60\right)\\\\ \implies S(n)&=2013(5+4)+6+3\\ &=2014\times 9\\ &=\color{#EC7300}\boxed{\color{#333333}18126} \end{aligned}

Can you please explain that how did you write a a as 1 0 2014 1 9 × 8 \dfrac{10^{2014} - 1}{9} \times 8

Vinayak Bansal - 3 years, 6 months ago

Log in to reply

1 0 2014 1 = 99999 \substack 2014 9s ( 99999 \substack 2014 9s ) 9 = 11111 \substack 2014 1s 8 × 11111 \substack 2014 1s = 888888 \substack 2014 8s = a \begin{aligned}10^{2014}-1&=\underbrace{99999\cdots}_{\substack{2014\text{ 9s}}}\\ \dfrac{\left(\underbrace{99999\cdots}_{\substack{2014\text{ 9s}}}\right)}{9}&=\underbrace{11111\cdots}_{\substack{2014\text{ 1s}}}\\ 8\times \underbrace{11111\cdots}_{\substack{2014\text{ 1s}}}&=\underbrace{888888\cdots}_{\substack{2014 \text{ 8s}}}=a\end{aligned}

Anirudh Sreekumar - 3 years, 6 months ago

Log in to reply

Thanks for your explanation

Vinayak Bansal - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...