A small tower

What is the last digit of 2 4 6 8 10 ? \huge 2^{4^{6^{8^{10}}}}?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Md Mehedi Hasan
Nov 2, 2017

2 1 = 2 2 2 = 4 2 3 = 8 2 4 = 16 2 5 = 32 2 6 = 64 2 7 = 128 2 8 = 256 2 9 = 512 2^1=2\\2^2=4\\2^3=8\\2^4=16\\2^5=32\\2^6=64\\2^7=128\\2^8=256\\2^9=512\\\vdots\quad \vdots\quad \vdots

We can see, changing exponent 4 4 , the last digit remains same. Again if exponent is divisible by 4 than the last digit come 6 6 .

Here, the 2 2 's exponent 4 6 8 10 \LARGE{ 4^{6^{8^{10}}}} is divisible by 4 4 .

So, it's last digit is 6 6

what is the second to last number?

Michael Fitzgerald - 3 years, 7 months ago
Chew-Seong Cheong
Nov 10, 2017

Relevant wiki: Euler's Theorem

Easy solution:

Note that 2 4 a = 2 4 2 4 2 4 2 4 = 16 16 16 16 2^{4^a} = 2^4 \cdot 2^4 \cdot 2^4 \cdots 2^4 = 16 \cdot 16 \cdot 16 \cdots 16 . We know that the product of two numbers end with 6 also ends with 6. Therefore, the last digit of a number of the form 2 4 a 2^{4^a} , where a a is a natural number, is 6 \boxed{6} .

Chinese remainder theorem

Since gcd ( 2 , 10 ) 1 \gcd(2,10) \ne 1 , we have to consider the prime factor 2 and 5 separately using Chinese remainder theorem as follows.

2 4 a 0 (mod 2) 2 4 a 2 n \begin{aligned} 2^{4^a} & \equiv 0 \text{ (mod 2)} \implies 2^{4^a} \equiv 2n \end{aligned}

Now consider:

2 4 a 2 4 a m o d ϕ ( 5 ) (mod 5) Since gcd ( 2 , 5 ) = 1 , Euler’s theorem applies. 2 4 a m o d 4 (mod 5) Euler’s totient function ϕ ( 5 ) = 4 2 0 (mod 5) 2 n 1 (mod 5) n 3 2 4 a 2 n 6 (mod 5) \begin{aligned} 2^{4^a} & \equiv 2^{\color{#3D99F6}4^a \bmod \phi(5)} \text{ (mod 5)} & \small \color{#3D99F6} \text{Since }\gcd(2,5) = 1 \text{, Euler's theorem applies.} \\ & \equiv 2^{\color{#3D99F6}4^a \bmod 4} \text{ (mod 5)} & \small \color{#3D99F6} \text{Euler's totient function }\phi (5) = 4 \\ & \equiv 2^0 \text{ (mod 5)} \\ \implies 2n & \equiv 1 \text{ (mod 5)} \\ \implies n & \equiv 3 \\ \implies 2^{4^a} & \equiv 2n \equiv \boxed{6} \text{ (mod 5)} \end{aligned}

The second solution is most interesting

Akshay Jamwal - 3 years, 7 months ago

Though others solutions are nice but for me, there can be much easier solution than those. 2 2 m o d 10 2≡2mod 10

2 4 6 m o d 10 2^4≡6 mod 10

( 2 4 ) x 6 x m o d 10 (2^4)^x ≡6^x mod 10

2 4 x 6 m o d 10 2^{4x} ≡ 6 mod 10 (since 6^n ends with 6 for every natural number n)

So last digit of 2 4 x 2^{4x} is 6 where x is any natural number.

Now clearly, 2 4 6 8 10 2^{4^{6^{8^{10}}}} = 2 4 n = 2 4 x = 2^{4^n} = 2^{4x} hence its last digit must be 6 6

\large \log_2 2^{4^{6^{8^{10}}}}=4.6.8.10.\log_2 2=1920\log_2 2 = 1920\\ \large 1920\mod{4}=0\\  2^{1}=2;          2^{2}=4;          2^{3} =8;          2^{4}=16;\\ 2^{5}=32;        2^{6}=64;        2^{7}=128;      2^{8}=256;\\           \vdots\quad                   \vdots\quad                 \vdots\quad                 \vdots\quad\\ 2^{1917}=..2;    2^{1918}=..4;    2^{1919}=..8;    2^{1920}=..6;

\large \log_3 3^{4^{6^{8^{10}}}}=4.6.8.10.\log_3 3=1920\log_3 3 = 1920\\ \large 1920\mod{4}=0\\  3^{1}=3;          3^{2}=9;          3^{3} =27;          3^{4}=81;\\ 3^{5}=243;      3^{6}=729;      3^{7}=2187;      3^{8}=6561;\\           \vdots\quad                   \vdots\quad                 \vdots\quad                 \vdots\quad\\ 3^{1917}=..3;    3^{1918}=..9;    3^{1919}=..7;      3^{1920}=..1;

Michael Fitzgerald - 3 years, 7 months ago
Raymond Chan
Nov 18, 2017

The last digit of 2^4 is 6. No matter how many numbers you multiply, as long as 6 is the last digits of all the numbers, the last digit of the product must be 6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...