A Special 4-digit number

Algebra Level 2

Find the 4-digit perfect square a b c d \overline{abcd} which satisfies a b c d = 1 \overline{ab}-\overline{cd}=1 .

Clarification: Both a b \overline{ab} and c d \overline{cd} are 2-digit numbers.


The answer is 8281.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chris Lewis
Jun 21, 2019

Let c d = x \overline{cd}=x , so that a b = x + 1 \overline{ab}=x+1 and a b c d = 100 ( x + 1 ) + x = 101 x + 100 \overline{abcd}=100(x+1)+x=101x+100 .

This has to be a square number; so say y 2 = 101 x + 100 y^2=101x+100 . Note that y y must also be a two-digit number (since a b c d < 10000 = 10 0 2 \overline{abcd}<10000=100^2 ).

Factoring using the difference of two squares, we have y 2 100 = ( y + 10 ) ( y 10 ) = 101 x y^2-100=(y+10)(y-10)=101x . Since 101 101 is prime, the only way we can satisfy this with a two-digit number y y is if y + 10 = 101 y+10=101 , ie y = 91 y=91 , and y 2 = 8281 y^2=\boxed{8281} .

Keep patience. A little typo because you were in a hurry. It should be y+10=101 instead of y+1=101. :)

A Former Brilliant Member - 1 year, 11 months ago

Log in to reply

Thank you! Typo fixed.

Chris Lewis - 1 year, 11 months ago
Chew-Seong Cheong
Jun 22, 2019

We note that 4-digit perfect squares are 3 2 2 , 3 3 2 , 3 4 3 , 9 9 2 32^2, 33^2, 34^3, \cdots 99^2 . Therefore we can assume the perfect square we are looking for be m n 2 = ( 10 m + n ) 2 = 100 m 2 + 20 m n + n 2 \overline{mn}^2 = (10m+n)^2 = 100m^2 + 20mn + n^2 , For n = 1 n=1 , we have:

{ a b = 100 m 2 + 20 m + 1 100 = m 2 + m 5 c d = 20 m + 1 100 m 5 \begin{cases} \overline{ab} = \left \lfloor \dfrac {100m^2 + 20m + 1}{100} \right \rfloor = m^2 + \left \lfloor \dfrac m5 \right \rfloor \\ \overline{cd} = 20m + 1 - 100 \left \lfloor \dfrac m5 \right \rfloor \end{cases}

From a b c d = 1 \overline{ab} - \overline{cd} = 1 ,

m 2 + m 5 20 m 1 + 100 m 5 = 1 m 2 20 m + 101 m 5 2 = 0 \begin{aligned} m^2 + \left \lfloor \dfrac m5 \right \rfloor - 20m - 1 + 100 \left \lfloor \dfrac m5 \right \rfloor & = 1 \\ m^2 - 20m + 101 \left \lfloor \dfrac m5 \right \rfloor - 2 & = 0 \end{aligned}

{ m 2 20 m 2 = 0 for m < 5 No integer solution m 2 20 m + 99 = 0 for m 5 ( m 9 ) ( m 11 ) = 0 m = 9 Acceptable solution \begin{cases} m^2 - 20m - 2 = 0 & \text{for }m < 5 & \small \color{#D61F06} \text{No integer solution} \\ m^2 - 20m + 99 = 0 & \text{for }m \ge 5 \\ (m-9)(m-11) = 0 \\ \implies m = 9 & & \small \color{#3D99F6} \text{Acceptable solution} \end{cases}

Therefore the perfect square is m n 2 = 9 1 2 = 8281 \overline{mn}^2 = 91^2 = \boxed{8281} .

Kyle T
Jun 21, 2019
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
<?php
for($i=1000;$i<10000;$i++){
    if(sqrt($i)==floor(sqrt($i))){
        $ab = substr($i,0,2);
        $cd = substr($i,2);
        if($ab-$cd==1){
            echo $i; //8281
            exit;
        }
    }
}
?>

Table [ If [ 100 ( n + 1 ) + n Z , 100 ( n + 1 ) + n , Nothing ] , { n , 10 , 99 } ] 8281 \text{Table}\left[\text{If}\left[\sqrt{100 (n+1)+n}\in \mathbb{Z},100 (n+1)+n,\text{Nothing}\right],\{n,10,99\}\right] \Rightarrow 8281

English translation: make a table of when the value of \1 00 ( n + 1 ) + n \100 (n+1)+n when the square root of the value is an integer while varying n from 10 to 99 inclusive. That range was selected because of the two digit number used to construct the four digit number. The resultant listconsisted of just one element, 8281. The expression used is just the composition of the four digit number from the two digit number.

It is written in Wolfram Mathematica. Here is the quick translation. List the values of 100(n+1)+n that are perfect squares. There is only one: 8281.

A Former Brilliant Member - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...