A special integral

Calculus Level 3

2006 2020 ln i ( ψ i ) ψ d ψ = a + b i \int_{2006}^{2020} \frac {\ln^{i}(\psi^{i})}{\psi} d\psi = a + bi

The above equality holds for a a and b b where a , b R a,b \in \R . Find the value of a + b a + b \lfloor a + b\rfloor \cdot \lceil a + b\rceil .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

N. Aadhaar Murty
Sep 8, 2020

We have -

I = 2006 2020 ln i ( ψ i ) ψ d ψ = 2006 2020 ψ 1 e ln ( ln i ( ψ i ) ) d ψ = 2006 2020 ψ 1 e i ln ( i ln ψ ) d ψ = 2006 2020 ψ 1 e i ( ln ( ln ψ ) + i π 2 ) d ψ I = \int_{2006}^{2020} \frac {\ln^{i}(\psi^{i})}{\psi} d\psi = \int_{2006}^{2020} \psi^{-1} e^{\ln(\ln^{i}(\psi^{i}))} d\psi = \int _{2006}^{2020} \psi^{-1} e^{i \cdot \ln(i \cdot \ln\psi)} d\psi= \int_{2006}^{2020} \psi^{-1} e^{i \cdot (\ln(\ln\psi) + \frac {i\pi}{2})} d\psi

= e π 2 ( 2006 2020 ψ 1 cos ( ln ( ln ψ ) ) d ψ + i 2006 2020 ψ 1 sin ( ln ( ln ψ ) ) d ψ ) = e^{\frac {-\pi}{2}}\left(\int_{2006}^{2020} \psi^{-1} \cos(\ln(\ln\psi)) d\psi + i\int_{2006}^{2020} \psi^{-1} \sin(\ln(\ln\psi)) d\psi\right)

By Euler's formula. Note that we can write ln ( i ln ( ψ ) ) \ln(i\cdot \ln(\psi)) in its polar form to take the natural log . Substituting β = ln ( ψ ) \beta = \ln(\psi) gives us ψ d β = d ψ \psi d\beta = d\psi . So, our original integral after integrating by parts twice (on both integrals) simplifies to -

= e π 2 ( 2006 2020 cos ( ln β ) d β + i 2006 2020 sin ( ln β ) d β ) = e π 2 ( β ( cos ( ln β ) + sin ( ln β ) 2 ) ln ( 2006 ) ln ( 2020 ) + i β ( sin ( ln β ) cos ( ln β ) 2 ) ln ( 2006 ) ln ( 2020 ) ) = e^{\frac {-\pi}{2}} \left( \int_{2006}^{2020} \cos(\ln \beta) d\beta+ i \int_{2006}^{2020} \sin(\ln\beta) d\beta \right) = e^{\frac {-\pi}{2}} \left( \beta\left(\frac {\cos(\ln \beta) + \sin(\ln \beta)}{2}\right) \Bigg |_{\ln(2006)}^{\ln(2020)} +i\beta\left(\frac {\sin(\ln \beta) - \cos(\ln \beta)}{2}\right)\Bigg|_{\ln(2006)}^{\ln(2020)}\right) Evaluating both the functions at the given bounds and multiplying by e π 2 e^{\frac {-\pi}{2}} gives us -

I 0.00064 + 0.0013 i \boxed {I \approx 0.00064 + 0.0013i}

Note -

Let r r be the length of the complex vector drawn from the origin to the complex number and θ \theta be the angle it makes with the real axis. Then, ln ( a + b i ) = ln ( r cos θ + i r sin θ ) = ln ( r ( cos θ + i sin θ ) ) = ln ( r e i θ ) = ln ( r ) + i θ \ln(a + bi) = \ln(r\cos \theta + ir\sin \theta) = \ln(r(\cos \theta + i\sin \theta)) = \ln(r \cdot e^{i\theta}) = \ln(r) + i\theta . In our case, r = ln ( ψ ) r = \ln(\psi) and since real part is equal to zero, θ = π 2 \theta = \frac {\pi}{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...