A Special Square

Geometry Level 3

In square A B C D ABCD , B D BD and A Q AQ intersect at P P with Q D = 1 QD = 1 and the area A A B P = A B 2 A_{\triangle{ABP}} = \dfrac{AB}{2} .

Find the side of the above square.


The answer is 1.61803.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the side length of square A B C D ABCD be a a . We note A B P \triangle ABP and D P Q \triangle DPQ are similar. Then A D P Q A A B P = 1 2 a 2 A D P Q a 2 = 1 2 a 2 A D P Q = 1 2 a \dfrac {A_{\triangle DPQ}}{A_{\triangle ABP}} = \dfrac {1^2}{a^2} \implies \dfrac {A_{\triangle DPQ}}{\frac a2} = \dfrac {1^2}{a^2} \implies A_{DPQ} = \dfrac 1{2a} . And A A D P = A A D Q A D P Q = a 2 1 2 a A_{\triangle ADP} = A_{\triangle ADQ} - A_{\triangle DPQ} = \dfrac a2 - \dfrac 1{2a} . Now we have:

A A B D A A B P + A A D P a 2 2 = a 2 + a 2 1 2 a Multiply both sides by 2 a a 3 = 2 a 2 1 a 3 2 a 2 + 1 = 0 ( a 1 ) ( a 2 a 1 ) = 0 Since a > 1 a = 1 + 5 2 1.618 φ , the golden ratio. \begin{aligned} A_{\triangle ABD} & A_{\triangle ABP} + A_{\triangle ADP} \\ \frac {a^2}2 & = \frac a2 + \frac a2 - \frac 1{2a} & \small \blue{\text{Multiply both sides by }2a} \\ a^3 & = 2a^2 - 1 \\ a^3 - 2a^2 + 1 & = 0 \\ (a-1)(a^2 - a - 1) & = 0 & \small \blue{\text{Since }a > 1} \\ \implies a & = \frac {1+\sqrt 5}2 \approx \boxed{1.618} & \small \blue{\varphi \text{, the golden ratio.}} \end{aligned}

Rocco Dalto
Mar 1, 2020

I provided two solutions:

Solution using coordinate geometry:

For B D : y = a x BD: y = a - x and for A Q : y = 1 a x x = a 2 a + 1 AQ: y = \dfrac{1}{a}x \implies x = \dfrac{a^2}{a + 1} \implies

A A B P = a 3 2 ( a + 1 ) = a 2 A_{\triangle{ABP}} = \dfrac{a^3}{2(a + 1)} = \dfrac{a}{2} a ( a 2 a 1 ) = 0 a > 0 \implies a(a^2 - a - 1) = 0 \:\ a > 0 \implies

a = 1 + 5 2 1.61803 \boxed{a = \dfrac{1 + \sqrt{5}}{2} \approx 1.61803} .

Solution using similar triangles:

Since vertical angles are congruent and A B C D AB \parallel CD \implies alternate interior angles are congruent A B P D P Q \implies \triangle{ABP} \sim \triangle{DPQ} \implies

a 1 = x a x x = a 2 a + 1 A A B P = a 3 2 ( a + 1 ) = a 2 \dfrac{a}{1} = \dfrac{x}{a - x} \implies x = \dfrac{a^2}{a + 1} \implies A_{\triangle{ABP}} = \dfrac{a^3}{2(a + 1)} = \dfrac{a}{2}

a ( a 2 a 1 ) = 0 a > 0 a = 1 + 5 2 1.61803 \implies a(a^2 - a - 1) = 0 \:\ a > 0 \implies \boxed{a = \dfrac{1 + \sqrt{5}}{2} \approx 1.61803} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...