A sphere and a cube

Geometry Level 2

A sphere and a cube have same surface area. Find the ratio of volume of sphere to that of cube.

2 : π \sqrt{2}:\sqrt{\pi} 2 : π 2:\pi 6 : π \sqrt{6}:\sqrt{\pi} 3 : π \sqrt{3}:\sqrt{\pi}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Manisha Garg
Feb 17, 2016

G i v e n t h e t h e s u r f a c e a r e a s a r e e q u a l 4 π r 2 = 6 a 2 2 π 3 r = a R a t i o o f v o l u m e s i s : 4 π r 3 3 : a 3 4 π r 3 3 : 2 π 3 2 π 3 r 3 2 : 2 π 3 6 : π \quad \quad \\ \quad Given\quad the\quad the\quad surface\quad areas\quad are\quad equal\\ \quad \quad 4\pi { r }^{ 2 }\quad =\quad 6{ a }^{ 2 }\\ \Rightarrow \quad \sqrt { \frac { 2\pi }{ 3 } } r\quad =\quad a\\ Ratio\quad of\quad volumes\quad is:\\ \frac { 4\pi { r }^{ 3 } }{ 3 } :\quad { a }^{ 3 }\\ \Rightarrow \frac { 4\pi { r }^{ 3 } }{ 3 } :\frac { 2\pi }{ 3 } \sqrt { \frac { 2\pi }{ 3 } } { r }^{ 3 }\\ \Rightarrow \quad \quad 2\quad :\sqrt { \frac { 2\pi }{ 3 } } \\ \Rightarrow \sqrt { 6 } :\quad \sqrt { \pi }

Vignesh Rao
Feb 17, 2016

Given that Surface Area of Sphere = Surface Area of Cube \color{#3D99F6}{\text{Given that Surface Area of Sphere = Surface Area of Cube}}

4 π r 2 = 6 a 2 4 \pi r^2 = 6 a^2

r a = \frac{r}{a}= 3 2 π \sqrt {\frac{3}{2 \pi}}

r = a 3 2 π \Rightarrow r = a\sqrt {\frac{3}{2 \pi}}

Volume of Sphere= \text{Volume of Sphere= } 4 3 π r 3 = 4 3 π a 3 2 π 3 = 2 a 3 3 2 π \frac{4}{3} \pi r^3 = \frac{4}{3} \pi {a\sqrt {\frac{3}{2 \pi}}}^3 = 2a^3 \sqrt{\frac{3}{2 \pi}}

Volume of Cube = a 3 \text{Volume of Cube}= a^3

Required Ratio = \text{Required Ratio}= 2 a 3 3 2 π a 3 = 2 3 2 π = 12 2 π = 6 : π \large \frac{2a^3 \sqrt{\frac{3}{2 \pi}}}{a^3} = 2 \sqrt{\frac{3}{2 \pi}} = \sqrt{\frac{12}{2\pi}} = \boxed{\color{#20A900}{\sqrt 6 : \sqrt \pi}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...