A spherical area bounded by three arcs

Geometry Level 5

Taking the unit sphere in the first octant, we define three curves parallel to the x y xy , x z xz and y z yz planes, parametrically, as follows:

p 1 ( t ) = ( sin θ 0 cos t , sin θ 0 sin t , cos θ 0 ) , 0 t π 2 p_1 (t) = ( \sin \theta_0 \cos t, \sin \theta_0 \sin t , \cos \theta_0 ), \hspace{12pt} 0 \le t \le \dfrac{\pi}{2}

p 2 ( s ) = ( sin θ 0 cos s , cos θ 0 , sin θ 0 sin s ) , 0 s π 2 p_2(s) = ( \sin \theta_0 \cos s , \cos \theta_0 , \sin \theta_0 \sin s ), \hspace{12pt} 0 \le s \le \dfrac{\pi}{2}

p 3 ( r ) = ( cos θ 0 , sin θ 0 cos r , sin θ 0 sin r ) , 0 r π 2 p_3(r) = ( \cos \theta_0 , \sin \theta_0 \cos r , \sin \theta_0 \sin r ), \hspace{12pt} 0 \le r \le \dfrac{\pi}{2}

If θ 0 = 8 1 \theta_0 = 81^{\circ} , then find the area bounded by the three arcs on the surface of the sphere, (shaded in yellow)


The answer is 0.9076.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hosam Hajjir
Aug 3, 2020

We're going to consider the area shaded in light blue in the figure above. It is 1 6 \dfrac{1}{6} of the required

area (from symmetry). To compute its area we'll define the green arc as the great arc (center at the origin) and characterized by y = z y = z , and the blue arc as the great arc (center at the origin) characterized by x = y x = y .

Blue Area = ϕ = ϕ 1 π 4 θ = θ 1 θ 0 sin θ d θ d ϕ \text{Blue Area} = \large \displaystyle \int_{\phi= \phi_1}^{\frac{\pi}{4}} \int_{ \theta = \theta_1 }^{ \theta_0 } \sin \theta d\theta d\phi

where ϕ 1 \phi_1 is characterized by sin θ 0 sin ϕ 1 = cos θ 0 \sin \theta_0 \sin \phi_1 = \cos \theta_0

Therefore, ϕ 1 = sin 1 ( cot θ 0 ) \phi_1 = \sin^{-1} ( \cot \theta_0 )

And sin θ 1 sin ϕ = cos θ 1 \sin \theta_1 \sin \phi = \cos \theta_1 (since y = z y = z ), thus θ 1 = tan 1 ( 1 sin ϕ ) \theta_1 = \tan^{-1} (\dfrac{1}{\sin \phi} )

After integration with respect to θ \theta , the above integral becomes,

Blue Area = ϕ = ϕ 1 π 4 ( cos θ 1 cos θ 0 ) d ϕ \text{Blue Area} = \large \displaystyle \int_{\phi = \phi_1 }^{\frac{\pi}{4}} (\cos \theta_1 - \cos \theta_0) d\phi

Since tan θ 1 = 1 sin ϕ \tan \theta_1 = \dfrac{1}{\sin \phi} then cos θ 1 = sin ϕ 1 + sin 2 ϕ \cos \theta_1 = \dfrac{\sin \phi}{\sqrt{1 + \sin^2 \phi} }

Hence, the integral becomes,

Blue Area = cos θ 0 ( ϕ 1 π 4 ) + ϕ = ϕ 1 π 4 sin ϕ 1 + sin 2 ϕ d ϕ \text{Blue Area} = \large \displaystyle \cos \theta_0 (\phi_1 - \frac{\pi}{4}) + \int_{\phi =\phi_1}^{ \frac{\pi}{4}} \dfrac{\sin \phi}{\sqrt{1 + \sin^2 \phi} } d\phi

Substituting sin 2 ϕ = 1 cos 2 ϕ \sin^2 \phi = 1 - \cos^2 \phi , the integral becomes,

Blue Area = cos θ 0 ( ϕ 1 π 4 ) + ϕ = ϕ 1 π 4 sin ϕ 2 cos 2 ϕ d ϕ \text{Blue Area} = \large \displaystyle \cos \theta_0 (\phi_1 - \frac{\pi}{4}) + \int_{\phi = \phi_1}^{\frac{\pi}{4}} \dfrac{\sin \phi}{\sqrt{2 - \cos^2 \phi }} d\phi

Blue Area = cos θ 0 ( ϕ 1 π 4 ) + ϕ = ϕ 1 π 4 sin ϕ 2 1 ( cos ϕ / 2 ) 2 d ϕ \text{Blue Area} = \large \displaystyle \cos \theta_0 (\phi_1 - \frac{\pi}{4}) + \int_{\phi = \phi_1}^{\frac{\pi}{4}} \dfrac{\sin \phi}{\sqrt{2}\sqrt{1 - (\cos \phi / \sqrt{2} )^2 }} d\phi

Using the substituting u = cos ϕ 2 u = \dfrac{\cos \phi}{\sqrt{2}} , the integral becomes

Blue Area = cos θ 0 ( ϕ 1 π 4 ) + sin 1 ( cos ϕ 1 / 2 ) π 6 \text{Blue Area} = \cos \theta_0 (\phi_1 - \frac{\pi}{4}) + \sin^{-1} (\cos \phi_1 / \sqrt{2} ) - \dfrac{\pi}{6}

Hence, finally, the required area is 6 6 times the above expression, and is given by

Area = 6 ( cos θ 0 ( ϕ 1 π 4 ) + sin 1 ( cos ϕ 1 / 2 ) π 6 ) \text{Area} = 6 \left( \cos \theta_0 (\phi_1 - \frac{\pi}{4}) + \sin^{-1} (\cos \phi_1 / \sqrt{2} ) - \dfrac{\pi}{6} \right)

I find angle A=B=C=88.5 degree for sphere triangle and use area from https://mathworld.wolfram.com/SphericalTriangle.html - but it not true. It is not three great circular arcs.

Yuriy Kazakov - 10 months, 1 week ago
Yuriy Kazakov
Aug 4, 2020

Monte Carlo with Phyton.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
import  random
import  math
n=10000000
A=math.cos(math.pi*81/180)
f=0
for k in range(n):
  t=random.uniform(0,1)*2*math.pi
  z=random.uniform(0,1)*2-1
  x=math.sqrt(1-z*z)*math.cos(t)
  y=math.sqrt(1-z*z)*math.sin(t)
  if z>A and  x>A and y>A:
    f=f+1
print(f/n*4*math.pi)

0.907925202907

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...