A spherical area bounded by three curves

Geometry Level 3

Taking the unit sphere in the first octant, we define three curves parallel to the x y xy , x z xz and y z yz planes, parametrically, as follows:

p 1 ( t ) = ( sin θ 0 cos t , sin θ 0 sin t , cos θ 0 ) , 0 t π 2 p_1 (t) = ( \sin \theta_0 \cos t, \sin \theta_0 \sin t , \cos \theta_0 ), \hspace{12pt} 0 \le t \le \dfrac{\pi}{2}

p 2 ( s ) = ( sin θ 0 cos s , cos θ 0 , sin θ 0 sin s ) , 0 s π 2 p_2(s) = ( \sin \theta_0 \cos s , \cos \theta_0 , \sin \theta_0 \sin s ), \hspace{12pt} 0 \le s \le \dfrac{\pi}{2}

p 3 ( r ) = ( cos θ 0 , sin θ 0 cos r , sin θ 0 sin r ) , 0 r π 2 p_3(r) = ( \cos \theta_0 , \sin \theta_0 \cos r , \sin \theta_0 \sin r ), \hspace{12pt} 0 \le r \le \dfrac{\pi}{2}

If θ 0 = 0.84 \theta_0 = 0.84 Radians, then find the area bounded by the three curves of the surface on the sphere, (shaded in yellow)


The answer is 0.07746.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
Aug 2, 2020

We're going to consider the area shaded in light blue in the figure above. It is 1 6 \dfrac{1}{6} of the required

area (from symmetry). To compute its area we'll define the green arc as the great arc (center at the origin) and characterised by y = z, and the blue arc as the great arc (center at the origin) characterised by x = y.

Blue Area = ϕ = π 4 ϕ 1 θ = θ 0 θ 1 sin θ d θ d ϕ \text{Blue Area} = \large \displaystyle \int_{\phi = \frac{\pi}{4}}^{ \phi_1} \int_{ \theta = \theta_0 }^{ \theta_1 } \sin \theta d\theta d\phi

where ϕ 1 \phi_1 is characterised by sin θ 0 sin ϕ 1 = cos θ 0 \sin \theta_0 \sin \phi_1 = \cos \theta_0

Therefore, ϕ 1 = sin 1 ( cot θ 0 ) \phi_1 = \sin^{-1} ( \cot \theta_0 )

And sin θ 1 sin ϕ = cos θ 1 \sin \theta_1 \sin \phi = \cos \theta_1 , thus θ 1 = tan 1 ( 1 sin ϕ ) \theta_1 = \tan^{-1} (\dfrac{1}{\sin \phi} )

After integration with respect to θ \theta , the above integral becomes,

Blue Area = ϕ = π 4 ϕ 1 ( cos θ 0 cos θ 1 ) d ϕ \text{Blue Area} = \large \displaystyle \int_{\phi = \frac{\pi}{4}}^{ \phi_1} (\cos \theta_0 - \cos \theta_1) d\phi

Since tan θ 1 = 1 sin ϕ \tan \theta_1 = \dfrac{1}{\sin \phi} then cos θ 1 = sin ϕ 1 + sin 2 ϕ \cos \theta_1 = \dfrac{\sin \phi}{\sqrt{1 + \sin^2 \phi} }

Hence, the integral becomes,

Blue Area = cos θ 0 ( ϕ 1 π 4 ) ϕ = π 4 ϕ 1 sin ϕ 1 + sin 2 ϕ d ϕ \text{Blue Area} = \large \displaystyle \cos \theta_0 (\phi_1 - \frac{\pi}{4}) - \int_{\phi = \frac{\pi}{4}}^{ \phi_1} \dfrac{\sin \phi}{\sqrt{1 + \sin^2 \phi} } d\phi

Substituting sin 2 ϕ = 1 cos 2 ϕ \sin^2 \phi = 1 - \cos^2 \phi , the integral becomes,

Blue Area = cos θ 0 ( ϕ 1 π 4 ) ϕ = π 4 ϕ 1 sin ϕ 2 cos 2 ϕ d ϕ \text{Blue Area} = \large \displaystyle \cos \theta_0 (\phi_1 - \frac{\pi}{4}) - \int_{\phi = \frac{\pi}{4}}^{ \phi_1} \dfrac{\sin \phi}{\sqrt{2 - \cos^2 \phi }} d\phi

Blue Area = cos θ 0 ( ϕ 1 π 4 ) ϕ = π 4 ϕ 1 sin ϕ 2 1 ( cos ϕ / 2 ) 2 d ϕ \text{Blue Area} = \large \displaystyle \cos \theta_0 (\phi_1 - \frac{\pi}{4}) - \int_{\phi = \frac{\pi}{4}}^{ \phi_1} \dfrac{\sin \phi}{\sqrt{2}\sqrt{1 - (\cos \phi / \sqrt{2} )^2 }} d\phi

Using the substituting u = cos ϕ 2 u = \dfrac{\cos \phi}{\sqrt{2}} , the integral becomes

Blue Area = cos θ 0 ( ϕ 1 π 4 ) + sin 1 ( cos ϕ 1 / 2 ) π 6 \text{Blue Area} = \cos \theta_0 (\phi_1 - \frac{\pi}{4}) + \sin^{-1} (\cos \phi_1 / \sqrt{2} ) - \dfrac{\pi}{6}

Hence, finally, the required area is 6 6 times the above expression, and is given by

Area = 6 ( cos θ 0 ( ϕ 1 π 4 ) + sin 1 ( cos ϕ 1 / 2 ) π 6 ) \text{Area} = 6 \left( \cos \theta_0 (\phi_1 - \frac{\pi}{4}) + \sin^{-1} (\cos \phi_1 / \sqrt{2} ) - \dfrac{\pi}{6} \right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...