A square, a rhombus, and five tangent circles

Geometry Level 4

The figure above depicts square A B C D ABCD of side length 8 8 . Taking E E as the midpoint of the upper side and G G as the midpoint of the bottom side, we draw rhombus E F G H EFGH as shown. The rhombus is drawn such that its incircle and the four corner circles tangent to it are all congruent. Find the radius of each of these five circles.


The answer is 1.5864.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

David Vreken
Dec 29, 2020

Label the bottom left as follows, and let r r be the radius of one of the circles and let θ = I G J = J G K \theta = \angle IGJ = \angle JGK .

Since I G L \angle IGL is a right angle, K G L = 90 ° 2 θ \angle KGL = 90° - 2\theta , and since L K G \angle LKG is a right angle, K L G = 2 θ \angle KLG = 2\theta .

As half the length of the square, A G = G L = 4 AG = GL = 4 , and since A I = r AI = r , I G = 4 r IG = 4 - r .

By the Pythagorean Theorem on I G J \triangle IGJ , J G = ( 4 r ) 2 + r 2 = 2 r 2 8 r + 16 JG = \sqrt{(4 - r)^2 + r^2} = \sqrt{2r^2 - 8r + 16} , so that cos θ = 4 r 2 r 2 8 r + 16 \cos \theta = \cfrac{4 - r}{\sqrt{2r^2 - 8r + 16}} , sin θ = r 2 r 2 8 r + 16 \sin \theta = \cfrac{r}{\sqrt{2r^2 - 8r + 16}} , and cos 2 θ = cos 2 θ sin 2 θ = 8 4 r r 2 4 r + 8 \cos 2\theta = \cos^2 \theta - \sin^2 \theta = \cfrac{8 - 4r}{r^2 - 4r + 8} .

From K L G \triangle KLG , cos 2 θ = r 4 \cos 2\theta = \cfrac{r}{4} .

Therefore, cos 2 θ = 8 4 r r 2 4 r + 8 = r 4 \cos 2\theta = \cfrac{8 - 4r}{r^2 - 4r + 8} = \cfrac{r}{4} , which rearranges to r 3 4 r 2 + 24 r 32 = 0 r^3 - 4r^2 + 24r - 32 = 0 , and solves numerically to r 1.5864 r \approx \boxed{1.5864} .

Chew-Seong Cheong
Dec 29, 2020

Let the radius of the five circles be r r , centers of the center circle and the top right circle be O O and P P respectively, P Q PQ be perpendicular to C E CE and O E F = θ \angle OEF = \theta . Then we note that sin θ = r 4 \sin \theta = \dfrac r4 . And

P Q cot P E Q + Q C = C E r cot ( 9 0 θ 2 ) + r = 4 Divide both sides by r tan ( 4 5 + θ 2 ) + 1 = 4 r = 1 sin θ Note that sin θ = r 4 1 + t 1 t + 1 = 1 + t 2 2 t Let t = tan θ 2 2 1 t = 1 + t 2 2 t t 3 t 2 + 5 t 1 = 0 By Cardano’s method t = 1 3 + 8 27 + 2 78 9 3 + 8 27 2 78 9 3 0.206783495 r = 4 sin θ = 8 t 1 + t 2 1.59 \begin{aligned} PQ \cot \angle PEQ + QC & = CE \\ r \cot \left(\frac {90^\circ - \theta}2 \right) + r & = 4 & \small \blue{\text{Divide both sides by }r} \\ \tan \left(45^\circ + \frac \theta 2\right) + 1 & = \frac 4r = \frac 1{\sin \theta} & \small \blue{\text{Note that }\sin \theta = \frac r4} \\ \frac {1+t}{1-t} + 1 & = \frac {1+t^2}{2t} & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ \frac 2{1-t} & = \frac {1+t^2}{2t} \\ t^3 - t^2 + 5t - 1 & = 0 & \small \blue{\text{By Cardano's method}} \\ \implies t & = \frac 13 + \sqrt[3]{-\frac 8{27}+\frac {2\sqrt{78}}9} + \sqrt[3]{-\frac 8{27}-\frac {2\sqrt{78}}9} \\ & \approx 0.206783495 \\ r & = 4\sin \theta = \frac {8t}{1+t^2} \approx \boxed{1.59} \end{aligned}

Sathvik Acharya
Dec 28, 2020

The radius of the incircle of rhombus E H G F EHGF is, r = H F E G 2 H F 2 + E G 2 = 8 x 4 x 2 + 64 ( 1 ) r=\frac{HF\cdot EG}{2\sqrt{HF^2+EG^2}}=\frac{8x}{\sqrt{4x^2+64}} \;\;\;\;\;\;\;\;\;\;\;\; \color{#D61F06} (1) Let H G O = 2 α A G H = 9 0 2 α \angle HGO=2\alpha\implies \angle AGH=90^\circ-2\alpha . Since the center of the incircle ( X ) X) lies on the angle bisector of A G H \angle AGH , A G X = Y G X = 4 5 α \angle AGX=\angle YGX=45^\circ-\alpha In H O G \triangle HOG , tan H G O = H O O G tan ( 2 α ) = x 4 \tan \angle HGO=\frac{HO}{OG}\implies \tan(2\alpha)=\frac{x}{4} 2 tan α 1 tan 2 α = x 4 ( 2 ) \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\implies \frac{2\tan \alpha}{1-\tan^2\alpha}=\frac{x}{4}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \color{#D61F06}(2) In X Y G \triangle XYG , tan Y G X = X Y Y G tan ( 4 5 α ) = r 4 r \tan \angle YGX=\frac{XY}{YG}\implies \tan (45^\circ-\alpha)=\frac{r}{4-r} 1 tan α 1 + tan α = r 4 r \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\implies \frac{1-\tan\alpha}{1+\tan\alpha}=\frac{r}{4-r} Solving for tan α \tan\alpha in the above equation, tan α = 1 r 4 r 1 + r 4 r = 1 r 2 \tan\alpha =\dfrac{1-\dfrac{r}{4-r}}{1+\dfrac{r}{4-r}}=1-\frac{r}{2} Substituting this in ( 2 ) \color{#D61F06}(2) , 2 tan α 1 tan 2 α = 2 r r r 2 4 = x 4 \frac{2\tan \alpha}{1-\tan^2\alpha}=\dfrac{2-r}{r-\dfrac{r^2}{4}}=\frac{x}{4} x = 32 16 r 4 r r 2 \implies x=\frac{32-16r}{4r-r^2} Substituting this in ( 1 ) \color{#D61F06}(1) , r 2 = 64 x 2 4 x 2 + 64 = 64 ( 32 16 r 4 r r 2 ) 2 4 ( 32 16 r 4 r r 2 ) 2 + 64 r^2=\frac{64x^2}{4x^2+64}=\dfrac{64\left(\dfrac{32-16r}{4r-r^2}\right)^2}{4\left(\dfrac{32-16r}{4r-r^2}\right)^2+64} Solving this equation in r r ,we have, the radius of the five circles is r 1.586 \boxed{r\approx 1.586}

As seen in the figure, we place the square on a coordinate plane. Point A A is on the origin and point B B lies on the positive x-semiaxis, i.e. B ( 8 , 0 ) B\left( 8,0 \right) . The center of the rhombus’ incircle is K ( 4 , 4 ) K\left( 4,4 \right) and the center of the lower-left circle is L ( r , r ) L\left( r,r \right) , where r r is the radius of the circles.
L N LN is perpendicular to A B AB . Let θ = B G H \theta =\angle BGH and φ = L G N \varphi =\angle LGN . Then,

tan θ 2 = cot ( π θ 2 ) = cot φ = N G L N = 4 r r ( 1 ) \tan \frac{\theta }{2}=\cot \left( \frac{\pi -\theta }{2} \right)=\cot \varphi =\frac{NG}{LN}=\frac{4-r}{r} \ \ \ \ \ (1) The line l l through points G G and H H has equation y = m ( x 4 ) m x y 4 m = 0 y=m\left( x-4 \right)\Leftrightarrow mx-y-4m=0 , where m m is the slope of l l . Thus,

m = tan θ = 2 tan θ 2 1 tan 2 θ 2 = ( 1 ) 2 4 r r 1 ( 4 r r ) 2 m = 4 r r 2 4 r 8 ( 2 ) m=\tan \theta =\frac{2\tan \frac{\theta }{2}}{1-{{\tan }^{2}}\frac{\theta }{2}}\overset{\left( 1 \right)}{\mathop{=}}\,\frac{2\frac{4-r}{r}}{1-{{\left( \frac{4-r}{r} \right)}^{2}}}\Rightarrow m=\frac{4r-{{r}^{2}}}{4r-8} \ \ \ \ \ (2)

l l is tangent to both circles with centers K K and L L , hence these two points are equidistant from l l . Using the distance formula found here we have

m r r 4 m m 2 + 1 = 4 m 4 4 m m 2 + 1 m r r 4 m = 4 m 4 4 m m ( r 4 ) r = 4 m ( r 4 ) r = 4 or m ( r 4 ) r = 4 \begin{aligned} \frac{\left| mr-r-4m \right|}{\sqrt{{{m}^{2}}+1}}=\frac{\left| 4m-4-4m \right|}{\sqrt{{{m}^{2}}+1}} & \Leftrightarrow \left| mr-r-4m \right|=\left| 4m-4-4m \right| \\ & \Leftrightarrow \left| m\left( r-4 \right)-r \right|=4 \\ & \Leftrightarrow m\left( r-4 \right)-r=-4\ \ \ \text{ or }\ \ \ m\left( r-4 \right)-r=4 \\ \end{aligned} Asume m ( r 4 ) r = 4 m\left( r-4 \right)-r=-4 . Combining with ( 2 ) (2) ,

4 r r 2 4 r 8 ( r 4 ) r = 4 r 2 = 8 r > 0 r = 2 2 \frac{4r-{{r}^{2}}}{4r-8}\left( r-4 \right)-r=-4\Leftrightarrow \ldots \Leftrightarrow {{r}^{2}}=8\overset{r>0}{\mathop{\Leftrightarrow }}\,r=2\sqrt{2} This value is rejected, because, obviously, 4 r < 8 r < 2 4r<8\Rightarrow r<2 . Hence, the relation that holds is m ( r 4 ) r = 4 m\left( r-4 \right)-r=4 . Again, with ( 2 ) (2) ,

4 r r 2 4 r 8 ( r 4 ) r 4 = 0 r 3 4 r 2 + 24 r 32 = 0 \frac{4r-{{r}^{2}}}{4r-8}\left( r-4 \right)-r-4=0\Leftrightarrow \ldots \Leftrightarrow {{r}^{3}}-4{{r}^{2}}+24r-32=0 The unique real solution of this equation gives the answer: r 1.5864 r\approx \boxed{1.5864} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...