In square A B C D , A F bisects ∠ E A D , B E = 3 6 , and D F = 6 4 . Find the area of △ A E F .
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the coordinates of A , B , C , D be ( 0 , 0 ) , ( 0 , a ) , ( a , a ) , ( a , 0 ) respectively, where a is the side length of the square. Then tan θ = a 6 4 , tan 2 θ = 3 6 a = 1 − tan 2 θ 2 tan θ . Solving we get a = 8 7 0 4 . So the coordinates of E and F are ( 3 6 , 8 7 0 4 ) and ( 8 7 0 4 , 6 4 ) respectively. Hence the area of △ A E F is 2 1 ∣ 3 6 × 6 4 + 8 7 0 4 × ( − 8 7 0 4 ) ∣ = 3 2 0 0
In square A B C D let A B = x ⟹
A E = x 2 + 3 6 2 , A F = x 2 + 6 4 2 and sin ( 2 θ ) = x 2 + 3 6 2 x = 2 sin ( θ ) cos ( θ ) , where sin ( θ ) = x 2 + 6 4 2 6 4
and cos ( θ ) = x 2 + 6 4 2 x
⟹ sin ( 2 θ ) = x 2 = 3 6 2 x = 2 sin ( θ ) cos ( θ ) = x 2 + 6 4 2 1 2 8 x
⟹ 1 2 8 x 2 + 3 6 2 = x 2 + 6 4 2 ⟹ x 4 − 2 ∗ 6 4 2 x 2 − 6 4 2 ∗ 8 2 ∗ 1 7 = 0
⟹ x 2 = 4 0 9 6 ± 4 6 0 8
Choosing the positive real root ⟹ x = 8 7 0 4 = 1 6 3 4 ⟹
E F = ( 1 6 3 4 − 3 6 ) 2 + ( 1 6 3 4 − 6 4 ) 2 = 2 2 8 0 0 − 3 2 0 0 3 4 =
2 0 5 7 − 8 3 4 .
U = ( 8 7 0 4 − 3 6 ) i + ( 6 4 − 8 7 0 4 ) j + 0 k
V = 8 7 0 4 i + 6 4 j + 0 k
⟹ ∣ U X V ∣ = ∣ 6 4 8 7 0 4 − 2 3 0 4 − 6 4 8 7 0 4 + 8 7 0 4 ∣ = 6 4 0 0
and U = 4 ( 4 3 4 − 9 ) 2 + ( 1 6 − 4 3 4 ) 2 = 2 0 5 7 − 8 3 4
⟹ d = 5 7 − 8 3 4 3 2 0
⟹ A △ A E F = 2 1 ( E F ) ( d ) = 2 1 ( 2 0 5 7 − 8 3 4 ) ( 5 7 − 8 3 4 3 2 0 ) = 3 2 0 0
Note: I wanted to find the ⊥ distance d . Of course you could have used:
A △ A E F = A □ − ( A △ A B E + A △ E C F + A △ A D F ) =
8 7 0 4 − 2 1 ( 5 7 6 3 4 + 8 7 0 4 − 1 6 0 0 3 4 + 2 3 0 4 + 1 0 2 4 3 4 ) =
8 7 0 4 − 5 5 0 4 = 3 2 0 0
Problem Loading...
Note Loading...
Set Loading...
Let the side length of square A B C D be a . Then tan θ = a 6 4 and
tan ( 9 0 ∘ − 2 θ ) 2 tan θ 1 − tan 2 θ 2 × a 6 4 1 − ( a 6 4 ) 2 1 − a 2 6 4 2 ⟹ a 2 = cot 2 θ = tan 2 θ 1 = a 3 6 = a 3 6 = a 3 6 = a 2 2 × 6 4 × 3 6 = 8 7 0 4
The area of △ A E F :
[ A E F ] = a 2 − ( 2 6 4 a + 2 3 6 a + 2 ( a − 6 4 ) ( a − 3 6 ) ) = a 2 − ( 2 a 2 + 1 1 5 2 ) = 2 a 2 − 1 1 5 2 = 2 8 7 0 4 − 1 1 5 2 = 3 2 0 0