A Square Problem!

Geometry Level 3

In square A B C D ABCD , A F AF bisects E A D \angle EAD , B E = 36 BE=36 , and D F = 64 DF=64 . Find the area of A E F \triangle AEF .

.


The answer is 3200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 22, 2020

Let the side length of square A B C D ABCD be a a . Then tan θ = 64 a \tan \theta = \dfrac {64}a and

tan ( 9 0 2 θ ) = cot 2 θ = 1 tan 2 θ = 36 a 1 tan 2 θ 2 tan θ = 36 a 1 ( 64 a ) 2 2 × 64 a = 36 a 1 6 4 2 a 2 = 2 × 64 × 36 a 2 a 2 = 8704 \begin{aligned} \tan (90^\circ - 2\theta) & = \cot 2\theta = \frac 1 {\tan 2\theta} = \frac {36}a \\ \frac {1-\tan^2 \theta}{2 \tan \theta} & = \frac {36}a \\ \frac {1-\left(\frac {64}a\right)^2}{2 \times \frac {64}a} & = \frac {36}a \\ 1 - \frac {64^2}{a^2} & = \frac {2 \times 64\times 36}{a^2} \\ \implies a^2 & = 8704 \end{aligned}

The area of A E F \triangle AEF :

[ A E F ] = a 2 ( 64 a 2 + 36 a 2 + ( a 64 ) ( a 36 ) 2 ) = a 2 ( a 2 2 + 1152 ) = a 2 2 1152 = 8704 2 1152 = 3200 \begin{aligned} [AEF] & = a^2 - \left(\frac {64a}2 + \frac {36a}2 + \frac {(a-64)(a-36)}2 \right) \\ & = a^2 - \left(\frac {a^2}2 + 1152\right) \\ & = \frac {a^2}2 - 1152 = \frac {8704}2 - 1152 = \boxed{3200} \end{aligned}

Let the coordinates of A , B , C , D A, B, C, D be ( 0 , 0 ) , ( 0 , a ) , ( a , a ) , ( a , 0 ) (0,0), (0, a), (a, a), (a, 0) respectively, where a a is the side length of the square. Then tan θ = 64 a , tan 2 θ = a 36 = 2 tan θ 1 tan 2 θ \tan \theta =\dfrac{64}{a}, \tan 2\theta=\dfrac{a}{36}=\dfrac{2\tan \theta}{1-\tan^2 \theta} . Solving we get a = 8704 a=\sqrt {8704} . So the coordinates of E E and F F are ( 36 , 8704 ) (36,\sqrt {8704}) and ( 8704 , 64 ) (\sqrt {8704},64) respectively. Hence the area of A E F \triangle {AEF} is 1 2 36 × 64 + 8704 × ( 8704 ) = 3200 \dfrac{1}{2}|36\times 64+\sqrt {8704}\times (-\sqrt{8704})|=\boxed {3200}

Rocco Dalto
Feb 21, 2020

In square A B C D ABCD let A B = x AB = x \implies

A E = x 2 + 3 6 2 AE = \sqrt{x^2 + 36^2} , A F = x 2 + 6 4 2 AF = \sqrt{x^2 + 64^2} and sin ( 2 θ ) = x x 2 + 3 6 2 = 2 sin ( θ ) cos ( θ ) \sin(2\theta) = \dfrac{x}{\sqrt{x^2 + 36^2}} = 2\sin(\theta)\cos(\theta) , where sin ( θ ) = 64 x 2 + 6 4 2 \sin(\theta) = \dfrac{64}{\sqrt{x^2 + 64^2}}

and cos ( θ ) = x x 2 + 6 4 2 \cos(\theta) = \dfrac{x}{\sqrt{x^2 + 64^2}}

sin ( 2 θ ) = x x 2 = 3 6 2 = 2 sin ( θ ) cos ( θ ) = 128 x x 2 + 6 4 2 \implies \sin(2\theta) = \dfrac{x}{\sqrt{x^2 = 36^2}} = 2\sin(\theta)\cos(\theta) = \dfrac{128x}{x^2 + 64^2}

128 x 2 + 3 6 2 = x 2 + 6 4 2 x 4 2 6 4 2 x 2 6 4 2 8 2 17 = 0 \implies 128\sqrt{x^2 + 36^2} = x^2 + 64^2 \implies x^4 - 2 * 64^2 x^2 - 64^2 * 8^2 * 17 = 0

x 2 = 4096 ± 4608 \implies x^2 = 4096 \pm 4608

Choosing the positive real root x = 8704 = 16 34 \implies x = \sqrt{8704} = 16\sqrt{34} \implies

E F = ( 16 34 36 ) 2 + ( 16 34 64 ) 2 = 22800 3200 34 = EF = \sqrt{(16\sqrt{34} - 36)^2 + (16\sqrt{34} - 64)^2} = \sqrt{22800 - 3200\sqrt{34}} =

20 57 8 34 20\sqrt{57 - 8\sqrt{34}} .

U = ( 8704 36 ) i + ( 64 8704 ) j + 0 k \vec{U} = (\sqrt{8704} - 36)\vec{i} + (64 - \sqrt{8704})\vec{j} + 0\vec{k}

V = 8704 i + 64 j + 0 k \vec{V} = \sqrt{8704} \:\ \vec{i} + 64\vec{j} + 0\vec{k}

U X V = 64 8704 2304 64 8704 + 8704 = 6400 \implies |\vec{U} X \vec{V}| = |64\sqrt{8704} - 2304 - 64\sqrt{8704} + 8704| = 6400

and U = 4 ( 4 34 9 ) 2 + ( 16 4 34 ) 2 = 20 57 8 34 \vec{U} = 4\sqrt{(4\sqrt{34} - 9)^2 + (16 - 4\sqrt{34})^2} = 20\sqrt{57 - 8\sqrt{34}}

d = 320 57 8 34 \implies d = \dfrac{320}{\sqrt{57 - 8\sqrt{34}}}

A A E F = 1 2 ( E F ) ( d ) = 1 2 ( 20 57 8 34 ) ( 320 57 8 34 ) = 3200 \implies A_{\triangle{AEF}} = \dfrac{1}{2}(EF)(d) = \dfrac{1}{2}(20\sqrt{57 - 8\sqrt{34}})(\dfrac{320}{\sqrt{57 - 8\sqrt{34}}}) = \boxed{3200}

Note: I wanted to find the \perp distance d d . Of course you could have used:

A A E F = A ( A A B E + A E C F + A A D F ) = A_{\triangle{AEF}} = A_{\square} - (A_{\triangle{ABE}} + A_{\triangle{ECF}} + A_{\triangle{ADF}}) =

8704 1 2 ( 576 34 + 8704 1600 34 + 2304 + 1024 34 ) = 8704 - \dfrac{1}{2}(576\sqrt{34} + 8704 - 1600\sqrt{34} + 2304 + 1024\sqrt{34}) =

8704 5504 = 3200 8704 - 5504 = 3200

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...