A Squared Triangle

Geometry Level 5

Three congruent squares, sharing a common vertex X X , are inscribed in A B C \triangle ABC with two opposing vertices of each square touching the triangle. The sides of A B C \triangle ABC are 13 13 , 14 14 , and 15. 15.

If the side length of the squares is a b c \dfrac{a\sqrt{b}}{c} , where a a , b b , and c c are coprime positive integers and c c is square-free, submit a + b + c a+b+c .

Similar Problems:


The answer is 1830.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let L X M = α \angle LXM = \alpha , K X J = β \angle KXJ = \beta , and O X P = γ \angle OXP = \gamma . We note that X P O = 9 0 γ 2 \angle XPO = 90^\circ - \dfrac \gamma 2 , X P M = 13 5 γ 2 \implies \angle XPM = 135^\circ - \dfrac \gamma 2 , M P B = 4 5 + γ 2 \angle MPB = 45^\circ + \dfrac \gamma 2 , P M L = 4 5 + γ 2 + B \angle PML = 45^\circ + \dfrac \gamma 2 + B , X M L = γ 2 + B \angle XML = \dfrac \gamma 2 + B . Therefore L X M = α = 18 0 γ 2 B \angle LXM = \alpha = 180^\circ - \gamma - 2B . Similarly, β = 18 0 γ 2 A \beta = 180^\circ - \gamma - 2A . Also note that:

α + β + γ + 3 × 9 0 = 36 0 α + β + γ = 9 0 18 0 γ 2 B + 18 0 γ 2 A + γ = 9 0 \begin{aligned} \alpha + \beta + \gamma + 3 \times 90^\circ & = 360^\circ \\ \alpha + \beta + \gamma & = 90^\circ \\ 180^\circ - \gamma - 2B + 180^\circ - \gamma - 2A + \gamma & = 90^\circ \end{aligned}

γ = 27 0 2 ( A + B ) = 27 0 2 ( 18 0 C ) = 2 C 9 0 \begin{aligned} \implies \gamma & = 270^\circ - 2(A+B) = 270^\circ - 2(180^\circ - C) = 2C - 90^\circ \end{aligned}

Therefore we can find the values of α \alpha , β \beta , and γ \gamma . A special feature of 13 13 - 14 14 - 15 15 triangle is that the altitude from C C to A B AB is 12 12 . Then the area of A B C \triangle ABC is 84 84 . Let the side length of the squares be r r and the altitudes from X X to B C BC , C A CA , and A B AB be h a h_a , h b h_b , and h c h_c respectively. Then the area of A B C \triangle ABC is also given by:

h a B C + h b C A + h c A B 2 = [ A B C ] 1 2 ( 15 r cos α 2 + 13 r cos β 2 + 14 r cos γ 2 ) = 84 \begin{aligned} \frac {h_a\cdot BC + h_b \cdot CA + h_c \cdot AB}2 & = [ABC] \\ \frac 12 \left(15 r \cos \frac \alpha 2 + 13 r \cos \frac \beta 2 + 14 r \cos \frac \gamma 2 \right) & = 84 \end{aligned}

We find that tan A = 12 5 \tan A = \dfrac {12}5 , tan B = 4 3 \tan B = \dfrac 43 , and tan C = 5 12 + 3 4 1 5 12 3 4 = 56 33 \tan C = \dfrac {\frac 5{12}+\frac 34}{1-\frac 5{12} \cdot \frac 34} = \dfrac {56}{33} and

tan γ 2 = tan ( C 4 5 ) = 56 33 1 56 33 + 1 = 23 89 cos γ 2 = 89 65 2 tan α 2 = tan ( 9 0 γ 2 B ) = cot ( γ 2 + B ) = 1 23 89 4 3 23 89 + 4 3 = 7 17 cos α 2 = 17 13 2 tan β 2 = tan ( 9 0 γ 2 A ) = cot ( γ 2 + A ) = 1 23 89 12 5 23 89 + 12 5 = 1 7 cos β 2 = 7 5 2 \begin{aligned} \tan \frac \gamma 2 & = \tan (C-45^\circ) = \frac {\frac {56}{33}-1}{\frac {56}{33}+1} = \frac {23}{89} & \implies \cos \frac \gamma 2 = \frac {89}{65\sqrt 2} \\ \tan \frac \alpha 2 & = \tan \left(90^\circ - \frac \gamma 2 - B\right) = \cot \left(\frac \gamma 2 + B\right) = \frac {1-\frac {23}{89}\cdot \frac 43}{\frac {23}{89}+\frac 43} = \frac 7{17} & \implies \cos \frac \alpha 2 = \frac {17}{13\sqrt 2} \\ \tan \frac \beta 2 & = \tan \left(90^\circ - \frac \gamma 2 - A\right) = \cot \left(\frac \gamma 2 + A\right) = \frac {1-\frac {23}{89}\cdot \frac {12}5}{\frac {23}{89}+\frac {12}5} = \frac 17 & \implies \cos \frac \beta 2 = \frac 7{5\sqrt 2} \end{aligned}

Therefore,

( 17 13 2 15 + 7 5 2 13 + 89 65 2 14 ) r = 84 2 3704 65 2 r = 84 2 r = 1365 2 463 \begin{aligned} \left(\frac {17}{13\sqrt 2} \cdot 15 + \frac 7{5\sqrt 2} \cdot 13 + \frac {89}{65\sqrt 2} \cdot 14 \right) r & = 84 \cdot 2 \\ \frac {3704}{65 \sqrt 2} r & = 84 \cdot 2 \\ \implies r & = \frac {1365\sqrt 2}{463} \end{aligned}

a + b + c = 1365 + 2 + 463 = 1830 \implies a+b+c = 1365 + 2 + 463 = \boxed{1830}

You never fail to disappoint, Chew-Seong. Thank you!

Fletcher Mattox - 7 months ago

Log in to reply

You are welcome.

Chew-Seong Cheong - 7 months ago
Maria Kozlowska
Nov 6, 2020

Formula for square edge for the first Kenmotu point is given here . After plugging the values in we get a=1365, b=2, c=463. a+b+c=1830

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...