A strange equation I

Algebra Level 5

The four roots of the polynomial P ( x ) = x 4 + 8 x + 12 P(x)=x^{4}+8x+12 can be expressed (with the correct choice of signs) as:

x = a cos ( d ° ) ± ± b sec ( d ° ) c cos ( d ° ) x=\mp\sqrt{a\cos(d°)}\pm\sqrt{\pm\sqrt{b\sec(d°)}-c\cos(d°)}

0 < d < 40 0<d<40

Where, a a , b b , c c and d d are positive integers, and d d is in degrees. Find a + b + c + d a+b+c+d .

You may also try Part II .


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Get ready for a lot of substitutions!:

First of all, we will make the equation x 4 + 8 x + 12 = 0 x^{4}+8x+12=0 in the form of two quadratics: ( x 2 + P x + Q ) ( x 2 P x + R ) = 0 (x^{2}+Px+Q)(x^{2}-Px+R)=0 . After expanding, we have: x 4 + ( Q + R P 2 ) x 2 + P ( R Q ) x + Q R = 0 x^{4}+(Q+R-P^{2})x^{2}+P(R-Q)x+QR=0 Now, form an equation system by comparing the coefficients: Q + R P 2 = 0 Q + R = P 2 P ( R Q ) = 8 R Q = 8 P Q R = 12 Q+R-P^{2}=0 \implies Q+R=P^{2}\\ P(R-Q)=8 \implies R-Q=\dfrac{8}{P}\\ QR=12

Solve for R R and Q Q by adding and substracting, respectively, the first and the second equation: R = P 2 + 8 P 2 Q = P 2 8 P 2 R=\dfrac{P^{2}+\dfrac{8}{P}}{2}\\ Q=\dfrac{P^{2}-\dfrac{8}{P}}{2}

And substitute them in the third equation, in order to solve for P P : ( P 2 + 8 P 2 ) ( P 2 8 P 2 ) = 12 P 6 48 P 2 64 = 0 ( P 2 ) 3 48 P 2 64 = 0 \left(\dfrac{P^{2}+\dfrac{8}{P}}{2}\right)\left(\dfrac{P^{2}-\dfrac{8}{P}}{2}\right)=12\\ P^{6}-48P^{2}-64=0\\ (P^{2})^{3}-48P^{2}-64=0 Here we have a bi-cubic equation, so let's solve for P 2 P^{2} . Now, here comes a tricky part: consider the identity ( u + v ) 3 3 u v ( u + v ) ( u 3 + v 3 ) = 0 (u+v)^{3}-3uv(u+v)-(u^{3}+v^{3})=0 and make it match with the equation: P 2 = u + v 3 u v = 48 u v = 16 ( u 3 + v 3 ) = 64 u 3 + v 3 = 64 P^{2}=u+v\\ -3uv=-48 \implies uv=16\\ -(u^{3}+v^{3})=-64 \implies u^{3}+v^{3}=64

And another trick: cube both sides of the first equation: u v = 16 ( u ) 3 ( v ) 3 = 4096 uv=16 \implies (u)^{3}(v)^{3}=4096

Observe that the equation system we formed matches, by Vieta's formulas, with a second degree equation with roots u 3 u^{3} and v 3 v^{3} , so let z 1 = u 3 z_{1}=u^{3} and z 2 = v 3 z_{2}=v^{3} : z 2 64 z + 4096 = 0 z^{2}-64z+4096=0 Use the quadratic formula: z 1 , 2 = 32 ± 32 i 3 z_{1,2}=32\pm32i\sqrt{3} Where i = 1 i=\sqrt{-1} is the maginary unit.

Substitute back for u u and v v : u = 32 + 32 i 3 3 v = 32 32 i 3 3 u=\sqrt[3]{32+32i\sqrt{3}}\\ v=\sqrt[3]{32-32i\sqrt{3}}

Express them in polar form, and consider only the principal value: u = 64 e π i 3 3 u = 4 e π i 9 v = 64 e π i 3 3 v = 4 e π i 9 u=\sqrt[3]{64e^{\frac{\pi i}{3}}} \implies u=4e^{\frac{\pi i}{9}}\\ v=\sqrt[3]{64e^{-\frac{\pi i}{3}}} \implies v=4e^{-\frac{\pi i}{9}}

Reverse to the rectangular form and convert from radians to degrees: u = 4 ( cos ( 20 ° ) + i sin ( 20 ° ) ) v = 4 ( cos ( 20 ° ) i sin ( 20 ° ) ) u=4(\cos(20°)+i \sin(20°))\\ v=4(\cos(20°)-i \sin(20°))

Now, P 2 = u + v P^{2}=u+v , so: P 2 = 4 ( cos ( 20 ° ) + i sin ( 20 ° ) ) + 4 ( cos ( 20 ° ) i sin ( 20 ° ) ) P 2 = 8 cos ( 20 ° ) P = 2 2 cos ( 20 ° ) P^{2}=4(\cos(20°)+i \sin(20°))+4(\cos(20°)-i \sin(20°))\\ P^{2}=8\cos(20°)\\ P=2\sqrt{2\cos(20°)}

Substitute back to obtain R R and Q Q : R = 4 cos ( 20 ° ) + 2 sec ( 20 ° ) Q = 4 cos ( 20 ° ) 2 sec ( 20 ° ) R=4\cos(20°)+\sqrt{2\sec(20°)}\\ Q=4\cos(20°)-\sqrt{2\sec(20°)}

Now, in our initial form ( x 2 + P x + Q ) ( x 2 P x + R ) = 0 (x^{2}+Px+Q)(x^{2}-Px+R)=0 , solve each factor using the quadratic formula: x 1 , 2 = P ± P 2 4 Q 2 x 3 , 4 = P ± P 2 4 R 2 x_{1,2}=\dfrac{-P\pm\sqrt{P^{2}-4Q}}{2}\\ x_{3,4}=\dfrac{P\pm\sqrt{P^{2}-4R}}{2}

And substitute back again with the known values of P P , Q Q and R R : x 1 , 2 = 2 cos ( 20 ° ) ± 2 sec ( 20 ° ) 2 cos ( 20 ° ) x 3 , 4 = 2 cos ( 20 ° ) ± 2 sec ( 20 ° ) 2 cos ( 20 ° ) x_{1,2}=-\sqrt{2\cos(20°)}\pm\sqrt{\sqrt{2\sec(20°)}-2\cos(20°)}\\ x_{3,4}=\sqrt{2\cos(20°)}\pm\sqrt{-\sqrt{2\sec(20°)}-2\cos(20°)}

The four solutions only differ from the signs, so we can conclude: x 1 , 2 , 3 , 4 = 2 cos ( 20 ° ) ± ± 2 sec ( 20 ° ) 2 cos ( 20 ° ) x_{1,2,3,4}=\mp\sqrt{2\cos(20°)}\pm\sqrt{\pm\sqrt{2\sec(20°)}-2\cos(20°)} With the correct sign choose for each x x : x 1 = + + x 2 = + x 3 = + + x 4 = + x_{1}=-++\\ x_{2}=--+\\ x_{3}=++-\\ x_{4}=+--

So, after all, a = b = c = 2 a=b=c=2 , d = 20 d=20 , and a + b + c + d = 26 a+b+c+d=\boxed{26} .

Shit. That was amazing!!!!

Tarun Khanna - 6 years, 11 months ago
Lu Chee Ket
Aug 27, 2014

Revised Ferrari's Method:

x^4 + 8 x + 12 = 0

=> x^4 + p x^2 - p x^2 + 8 x + 12 = 0

=> (x^2 + p/ 2)^2 - (p x^2 - 8 x) + 12 - p^2/ 4 = 0

=> (x^2 + p/ 2)^2 - [sqrt(p) x - 4/ sqrt(p)]^2 + 12 - p^2/ 4 - 16/ p = 0

With 12 - p^2/ 4 - 16/ p = 0 such that p^3 - 48 p - 64 = 0 where p = 8 Cos 20 deg is taken,

(x^2 + p/ 2)^2 - [sqrt(p) x - 4/ sqrt(p)]^2 = 0

=> [x^2 + p/ 2 - sqrt(p) x + 4/ sqrt(p)][x^2 + p/ 2 + sqrt(p) x - 4/ sqrt(p)] = 0

=> [x^2 - sqrt(p) x + 4/ sqrt(p) + p/ 2][x^2 + sqrt(p) x - 4/ sqrt(p) + p/ 2 ] = 0

=> [(x - sqrt(p)/ 2)^2 - (p/ 4 - 4/ sqrt(p) - p/ 2)][(x + sqrt(p)/ 2)^2 - (p/ 4 + 4/ sqrt(p) - p/ 2)] = 0

=> [(x - sqrt(p)/ 2)^2 - (- 4/ sqrt(p) - p/ 4)][(x + sqrt(p)/ 2)^2 - (4/ sqrt(p) - p/ 4)] = 0

Hence,

x = sqrt(p)/ 2 - sqrt(- 4/ sqrt(p) - p/ 4) or sqrt(p)/ 2 + sqrt(- 4/ sqrt(p) - p/ 4) OR - sqrt(p)/ 2 - sqrt(4/ sqrt(p) - p/ 4) or - sqrt(p)/ 2 + sqrt(4/ sqrt(p) - p/ 4)

With p = 8 Cos (20 deg) as 0 deg < d deg < 40 deg, {a degree is equal to Pi/180 and therefore never repeat wrongly. The question made a slight mistake.}

x = Sign sqrt(2 Cos 20 deg) +/- sqrt[-Sign sqrt(2 Sec 20 deg) - 2 Cos 20 deg]

a + b + c + d = 2 + 2 + 2 + 20 = 26.

1 degree = Pi/ 180 (of value). Never repeat or miss out.

Lu Chee Ket - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...