A strange equation II

Algebra Level 5

The three real roots of the polynomial P ( x ) = x 3 3 x 2 + 1 P(x)=x^{3}-3x^{2}+1 can be expressed as:

x 1 = b cos ( e ° ) + a , x 2 = c cos ( f ° ) + a , x 3 = d cos ( g ° ) + a , x_{1}=-b\cos(e°)+a , x_{2}=-c\cos(f°)+a, x_{3}=d\cos(g°)+a,

where x 1 < x 2 < x 3 x_{1}<x_{2}<x_{3} , 0 ° < e < 90 ° 0°<e<90° , 0 ° < f < 90 ° 0°<f<90° , 0 ° < g < 90 ° 0°<g<90° , such that a a , b b , c c , d d , e e , f f and g g are positive integers; and e e , f f and g g are integer degrees. Find a + b + c + d + e + f + g a+b+c+d+e+f+g .

You may also try Part III .


The answer is 147.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let's substitute x = y + 1 x=y+1 in order to delete the x 2 x^{2} coefficient: ( y + 1 ) 3 3 ( y + 1 ) 2 + 1 = 0 (y+1)^{3}-3(y+1)^{2}+1=0 y 3 3 y 1 = 0 y^{3}-3y-1=0

Now, there comes the tricky part. Let's assume the identity ( u + v ) 3 3 u v ( u + v ) ( u 3 + v 3 ) = 0 (u+v)^{3}-3uv(u+v)-(u^{3}+v^{3})=0 and make it match with the equation: y = u + v y=u+v 3 u v = 3 u v = 1 -3uv=-3 \Leftrightarrow uv=1 ( u 3 + v 3 ) = 1 u 3 + v 3 = 1 -(u^{3}+v^{3})=-1 \Leftrightarrow u^{3}+v^{3}=1

Now, another trick: cube both sides of the first equation: u v = 1 ( u ) 3 ( v ) 3 = 1 uv=1 \Leftrightarrow (u)^{3}(v)^{3}=1

With this, we have an equation system that matches with a second degree equation, so let's z 1 = u 3 z_{1}=u^{3} and z 2 = v 3 z_{2}=v^{3} : z 2 z + 1 = 0 z^{2}-z+1=0

Use the quadratic formula: z 1 , 2 = 1 ± i 3 2 z_{1,2}=\dfrac{1\pm i\sqrt{3}}{2}

And substitute back for u u and v v : u = 1 + i 3 2 3 u=\sqrt[3]{\dfrac{1+i\sqrt{3}}{2}} v = 1 i 3 2 3 v=\sqrt[3]{\dfrac{1-i\sqrt{3}}{2}} Where i = 1 i=\sqrt{-1} is the imaginary unit.

Express them in the polar form: u = e i ( π 3 + 2 π k ) 3 u = e π i 9 ( 6 k + 1 ) u=\sqrt[3]{e^{i\left(\dfrac{\pi}{3}+2\pi k \right)}} \Leftrightarrow u=e^{\dfrac{\pi i}{9} \left(6k+1\right)} v = e i ( π 3 + 2 π k ) 3 v = e π i 9 ( 6 k + 1 ) v=\sqrt[3]{e^{-i\left(\dfrac{\pi}{3}+2\pi k \right)}} \Leftrightarrow v=e^{-\dfrac{\pi i}{9} \left(6k+1\right)} Where k = 0 , 1 , 2 k={0,1,2}

Reverse to the rectangular form and convert from radians to degrees: u = cos ( 20 ° ( 6 k + 1 ) ) + i sin ( 20 ° ( 6 k + 1 ) ) u=\cos(20°(6k+1))+i \sin(20°(6k+1)) v = cos ( 20 ° ( 6 k + 1 ) ) i sin ( 20 ° ( 6 k + 1 ) ) v=\cos(20°(6k+1))-i \sin(20°(6k+1))

Now, for k = 0 k=0 : u = cos ( 20 ° ) + i sin ( 20 ° ) u=\cos(20°)+i \sin(20°) v = cos ( 20 ° ) i sin ( 20 ° ) v=\cos(20°)-i \sin(20°) So, y = u + v y=u+v : y = cos ( 20 ° ) + i sin ( 20 ° ) + cos ( 20 ° ) i sin ( 20 ° ) y=\cos(20°)+i \sin(20°)+\cos(20°)-i \sin(20°) y = 2 cos ( 20 ° ) y=2\cos(20°) And, x = y + 1 x=y+1 : x = 2 cos ( 20 ° ) + 1 \boxed{x=2\cos(20°)+1}

Now, for k = 1 k=1 : u = cos ( 140 ° ) + i sin ( 140 ° ) u = cos ( 40 ° ) + i sin ( 40 ° ) u=\cos(140°)+i \sin(140°) \leftrightarrow u=-\cos(40°)+i \sin(40°) v = cos ( 140 ° ) i sin ( 140 ° ) v = cos ( 40 ° ) i sin ( 40 ° ) v=\cos(140°)-i \sin(140°) \leftrightarrow v=-\cos(40°)-i \sin(40°) So, y = u + v y=u+v : y = cos ( 40 ° ) + i sin ( 40 ° ) cos ( 40 ° ) i sin ( 40 ° ) y=-\cos(40°)+i \sin(40°)-\cos(40°)-i \sin(40°) y = 2 cos ( 40 ° ) y=-2\cos(40°) And, x = y + 1 x=y+1 : x = 2 cos ( 40 ° ) + 1 \boxed{x=-2\cos(40°)+1}

And finally, for k = 2 k=2 : u = cos ( 260 ° ) + i sin ( 260 ° ) u = cos ( 80 ° ) i sin ( 80 ° ) u=\cos(260°)+i \sin(260°) \leftrightarrow u=-\cos(80°)-i \sin(80°) v = cos ( 260 ° ) i sin ( 260 ° ) v = cos ( 80 ° ) + i sin ( 80 ° ) v=\cos(260°)-i \sin(260°) \leftrightarrow v=-\cos(80°)+i \sin(80°) So, y = u + v y=u+v : y = cos ( 80 ° ) i sin ( 80 ° ) cos ( 80 ° ) + i sin ( 80 ° ) y=-\cos(80°)-i \sin(80°)-\cos(80°)+i \sin(80°) y = 2 cos ( 80 ° ) y=-2\cos(80°) And, x = y + 1 x=y+1 : x = 2 cos ( 80 ° ) + 1 \boxed{x=-2\cos(80°)+1}

We obtained three solutions for x x , and after ordering them, we have: x 1 = 2 cos ( 40 ° ) + 1 x_{1}=-2\cos(40°)+1 x 2 = 2 cos ( 80 ° ) + 1 x_{2}=-2\cos(80°)+1 x 3 = 2 cos ( 20 ° ) + 1 x_{3}=2\cos(20°)+1

So, a = 1 a=1 , b = c = d = 2 b=c=d=2 , e = 40 e=40 , f = 80 f=80 and g = 20 g=20 , and a + b + c + d + e + f + g = 147 a+b+c+d+e+f+g=\boxed{147}

The quick way of solving y 3 3 y 1 = 0 y^3 - 3y -1 = 0 is to use the substitution y = 2 cos z y = 2 \cos z , which gives us

8 cos z 6 cos z 1 = 0 cos 3 z = 1 2 8 \cos ^ z - 6 \cos z -1 = 0 \Rightarrow \cos 3z = \frac{1}{2}

This gives us z = 20 , 100 , 140 z = 20, 100, 140 , and choosing the correct signs to take 180 z 180-z would give us the values of 20 , 40 , 80 20, 40, 80 that you calculated.

Note: A possible tricky part is explaining why 2 cos 2 0 + 1 2 \cos 20^\circ + 1 has a unique expression in that form. I don't immediately see why this has to be true. Any thoughts?

Calvin Lin Staff - 7 years, 1 month ago

Log in to reply

But we dont know that y is between -2 and 2. Please explain if I am wrong

Aakash Khandelwal - 5 years, 5 months ago

Log in to reply

We can solve for cos θ > 1 | \cos \theta | > 1 by extending the definition of the trigonometric function into the complex plane. In this case, as it turns out, we do not need to do so.

Calvin Lin Staff - 5 years, 5 months ago

Just saying, you've duplicated the proof of Cardan's method. In this case, that is, the irreducible case of the cubic, trigonometry helps to find the roots as pointed out by Calvin Lin. You might want to refer to some old books for many such examples and exercises.

Deeparaj Bhat - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...