The three real roots of the polynomial P ( x ) = x 3 + 3 x 2 − 5 1 x + 5 4 3 − 1 0 7 can be expressed as:
x 1 = − a b cos ( α ) − c , x 2 = a b cos ( β ) − c , x 3 = a b cos ( θ ) − c ,
where x 1 < x 2 < x 3 , 0 ° < α < 9 0 ° , 0 ° < β < 9 0 ° , 0 ° < θ < 9 0 ° , such that a , b and c are positive integers; and α , β and θ are integer degress. Find a + b + c α + β + θ − 1 .
You may also like Part IV .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How long does it take to think of this kind of a solution? (It's amazing, that's why I was wondering)
Very nice solution, shorter than mine.
Let's make the substitution x = y − 1 to delete the x 2 coefficient: ( y − 1 ) 3 + 3 ( y − 1 ) 2 − 5 1 ( y − 1 ) + 5 4 3 − 1 0 7 = 0 y 3 − 5 4 y + 5 4 3 − 5 4 = 0
Now, consider the identity ( u + v ) 3 − 3 u v ( u + v ) − ( u 3 + v 3 ) = 0 and make it coincide with the equation: y = u + v − 3 u v = − 5 4 ↔ u v = 1 8 − ( u 3 + v 3 ) = 5 4 3 − 5 4 ↔ u 3 + v 3 = 5 4 − 5 4 3
And cube both sides of the second equation: u v = 1 8 ↔ ( u ) 3 ( v ) 3 = 5 8 3 2
Observe that the second and the third equation matches, by Vieta's formula, with a second-degree equation with roots u 3 and v 3 . So, let z 1 = u 3 and z 2 = v 3 : z 2 + ( 5 4 3 − 5 4 ) z + 5 8 3 2 = 0 .
Use the quadratic formula to solve for z 1 , 2 : z 1 , 2 = 2 7 − 2 7 3 ± i ( 2 7 3 + 2 7 ) Where i = − 1 is the imaginary unit.
Now, let's express both values of z in polar form, but in this case the modulus R and the argument δ aren't very evident, so let's compute them: R = ( 2 7 − 2 7 3 ) 2 + ( 2 7 3 − 2 7 ) 2 R = 5 4 2 tan δ = 2 7 − 2 7 3 2 7 3 + 2 7 tan δ = − ( 2 + 3 ) We're lucky because we can compute exactly δ : δ = 1 2 7 π
Now, express z 1 , 2 in polar form: z 1 , 2 = R e i ( δ + 2 π k ) z 1 , 2 = 5 4 2 e ± 1 2 π i ( 7 + 2 4 k )
And substitute back for u and v : u = 3 5 4 2 e 1 2 π i ( 7 + 2 4 k ) u = 3 2 e 3 6 π i ( 7 + 2 4 k ) v = 3 5 4 2 e − 1 2 π i ( 7 + 2 4 k ) v = 3 2 e − 3 6 π i ( 7 + 2 4 k ) And express now in rectangular form and convert radians to degrees: u = 3 2 [ cos ( 5 ° ( 7 + 2 4 k ) ) + i sin ( 5 ° ( 7 + 2 4 k ) ) ] v = 3 2 [ cos ( 5 ° ( 7 + 2 4 k ) ) − i sin ( 5 ° ( 7 + 2 4 k ) ) ] For k = 0 , 1 , 2 .
Now, remember that y = u + v and x = y − 1 , so let's compute for the three values of k .
For k = 0 : u = 3 2 [ cos ( 3 5 ° ) + i sin ( 3 5 ° ) ] v = 3 2 [ cos ( 3 5 ° ) − i sin ( 3 5 ° ) ] y = 3 2 [ cos ( 3 5 ° ) + i sin ( 3 5 ° ) ] + 3 2 [ cos ( 3 5 ° ) − i sin ( 3 5 ° ) ] y = 6 2 cos ( 3 5 ° ) x = 6 2 cos ( 3 5 ° ) − 1
For k = 1 : u = 3 2 [ cos ( 1 5 5 ° ) + i sin ( 1 5 5 ° ) ] ↔ u = 3 2 [ − cos ( 2 5 ° ) + i sin ( 2 5 ° ) ] v = 3 2 [ cos ( 1 5 5 ° ) − i sin ( 1 5 5 ° ) ] ↔ u = 3 2 [ − cos ( 2 5 ° ) − i sin ( 2 5 ° ) ] y = 3 2 [ − cos ( 2 5 ° ) + i sin ( 2 5 ° ) ] + 3 2 [ − cos ( 2 5 ° ) − i sin ( 2 5 ° ) ] y = − 6 2 cos ( 2 5 ° ) x = − 6 2 cos ( 2 5 ° ) − 1
For k = 2 : u = 3 2 [ cos ( 2 7 5 ° ) + i sin ( 2 7 5 ° ) ] ↔ u = 3 2 [ cos ( 8 5 ° ) − i sin ( 8 5 ° ) ] v = 3 2 [ cos ( 2 7 5 ° ) − i sin ( 2 7 5 ° ) ] ↔ u = 3 2 [ cos ( 8 5 ° ) + i sin ( 8 5 ° ) ] y = 3 2 [ cos ( 8 5 ° ) − i sin ( 8 5 ° ) ] + 3 2 [ cos ( 8 5 ° ) + i sin ( 8 5 ° ) ] y = 6 2 cos ( 8 5 ° ) x = 6 2 cos ( 8 5 ° ) − 1
Now, order the three solutions for x : x 1 = − 6 2 cos ( 2 5 ° ) − 1 x 2 = 6 2 cos ( 8 5 ° ) − 1 x 3 = 6 2 cos ( 3 5 ° ) − 1
So, α = 2 5 , β = 8 5 , θ = 3 5 , a = 6 , b = 2 , c = 1 and a + b + c α + β + θ − 1 = 9 1 4 4 = 1 6 .
With f(x) = x^3 + 3 x^2 - 51 x + 54 sqrt(3) - 107,
Let x = y + k,
f(k) = k^3 + 3 k^2 - 51 k + 54 sqrt(3) - 107
f'(x)/ 1! = 3 k^2 + 6 k - 51
f''(x)/ 2! = (6 k + 6)/ 2 = 3 k + 3
f'''(x)/ 3! = 6/ 6 = 1
With f''(x)/ 2! = 0, k = -1,
y^3 - 54 y + 54 [sqrt(3) - 1] = 0 which can apply cubic formula. f^n (x)/ n! can minimize mistake and able to allow computer to do.
Applying sqrt[4 - 2 sqrt(3)] = sqrt(3) - 1,
x = -3 {cbrt[sqrt(3) - 1 - j (sqrt(3) + 1)] + cbrt[sqrt(3) - 1 + j (sqrt(3) + 1)] - 1;
|sqrt(3) - 1 - j (sqrt(3) + 1)| = |sqrt(3) - 1 + j (sqrt(3) + 1)| = 2 sqrt(2);
Arg[sqrt(3) - 1 - j (sqrt(3) + 1)] = - 75 deg while Arg[sqrt(3) - 1 + j (sqrt(3) + 1)] = 75 deg;
Finally,
x1 = - 6 sqrt(2) Cos 25 deg - 1
x2 = 6 sqrt(2) Cos 85 deg - 1
x3 = 6 sqrt(2) Cos 35 deg - 1
a = 6, b = 2 and c = 1.
(A + B + T - 1)/ (a + b + c) = (25 + 85 + 35 - 1)/ (6 + 2 + 1) = 144/ 9 = 16
Problem Loading...
Note Loading...
Set Loading...
We first depress the cubic equation.
x 3 + 3 x 2 − 5 1 x + 5 4 3 − 1 0 7 = = = ( x + 1 ) 3 − 5 4 x − 1 0 8 + 5 4 3 ( x + 1 ) 3 − 5 4 ( x + 1 ) + ( 5 4 3 − 5 4 ) , let y = x + 1 y 3 − 5 4 y + ( 5 4 3 − 5 4 )
We want to solve the equation via trigonometric equations. Recall the triple angle formula cos ( 3 Θ ) = 4 cos 3 ( Θ ) − 3 cos ( Θ ) , so we must have another substitution with A > 0 , y = A cos ( Θ ) such that the ratio coefficient of cos 3 ( Θ ) to cos ( Θ ) for y 3 and 5 4 y is 4 : 3 after substitution.
y 3 : 5 4 y A 3 : 5 4 A 5 4 A A 3 A = = = = 4 : 3 4 : 3 3 4 7 2
Thus the substitution y = 7 2 cos ( Θ )
7 2 ⋅ ( 7 2 cos 3 ( Θ ) − 5 4 cos ( Θ ) ) + ( 5 4 3 − 5 4 ) 7 2 ⋅ 1 8 ⋅ ( 4 cos 3 ( Θ ) − 3 cos ( Θ ) ) 7 2 ⋅ cos ( 3 Θ ) cos ( 3 Θ ) = = = = = 0 5 4 − 5 4 3 ( 3 − 3 3 ) 7 2 3 − 3 3 − 2 2 3 − 1
With the double angle formula cos ( 2 ϕ ) = 1 − 2 sin 2 ( ϕ ) ,
1 − 2 sin 2 ( 1 5 ∘ ) 1 − 2 sin 2 ( 1 5 ∘ ) sin ( 1 5 ∘ ) cos ( 7 5 ∘ ) cos ( 1 0 5 ∘ ) cos ( 1 0 5 ∘ ) , cos ( 3 6 0 ∘ − 1 0 5 ∘ ) , cos ( 3 6 0 ∘ + 1 0 5 ∘ ) cos ( 1 0 5 ∘ ) , cos ( 2 5 5 ∘ ) , cos ( 4 6 5 ∘ ) = = = = = = = = = cos ( 3 0 ∘ ) 2 3 2 1 − 2 3 2 2 4 − 2 3 2 2 1 2 + ( 3 ) 2 − 2 ⋅ 1 ⋅ 3 2 2 3 − 1 − 2 2 3 − 1 − 2 2 3 − 1 − 2 2 3 − 1
So the 3 smallest positive values of 3 Θ is 1 0 5 ∘ , 2 5 5 ∘ , 4 6 5 ∘ , equivalently Θ = 3 5 ∘ , 8 5 ∘ , 1 5 5 ∘
Because we want the angles to be positive acute angles, we change the last angle to 1 8 0 ∘ − 1 5 5 ∘ = 2 5 ∘
y x + 1 x = = = = 7 2 cos ( 3 5 ∘ ) , 7 2 cos ( 8 5 ∘ ) , − 7 2 cos ( 2 5 ∘ ) 6 2 cos ( 3 5 ∘ ) , 6 2 cos ( 8 5 ∘ ) , − 6 2 cos ( 2 5 ∘ ) 6 2 cos ( 3 5 ∘ ) , 6 2 cos ( 8 5 ∘ ) , − 6 2 cos ( 2 5 ∘ ) 6 2 cos ( 3 5 ∘ ) − 1 , 6 2 cos ( 8 5 ∘ ) − 1 , − 6 2 cos ( 2 5 ∘ ) − 1
Hence, a = 6 , b = 2 , c = 1 , α = 2 5 , β = 3 5 , θ = 8 5 ⇒ a + b + c α + β + θ − 1 = 1 6