A strange equation III

Algebra Level 5

The three real roots of the polynomial P ( x ) = x 3 + 3 x 2 51 x + 54 3 107 P(x)=x^{3}+3x^{2}-51x+54\sqrt{3}-107 can be expressed as:

x 1 = a b cos ( α ) c , x 2 = a b cos ( β ) c , x 3 = a b cos ( θ ) c , x_{1}=-a\sqrt{b}\cos(\alpha)-c , x_{2}=a\sqrt{b}\cos(\beta)-c , x_{3}=a\sqrt{b}\cos(\theta)-c,

where x 1 < x 2 < x 3 x_{1}<x_{2}<x_{3} , 0 ° < α < 90 ° 0°<\alpha<90° , 0 ° < β < 90 ° 0°<\beta<90° , 0 ° < θ < 90 ° 0°<\theta<90° , such that a a , b b and c c are positive integers; and α \alpha , β \beta and θ \theta are integer degress. Find α + β + θ 1 a + b + c \dfrac{\alpha+\beta+\theta-1}{a+b+c} .

You may also like Part IV .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pi Han Goh
Apr 25, 2014

We first depress the cubic equation.

x 3 + 3 x 2 51 x + 54 3 107 = ( x + 1 ) 3 54 x 108 + 54 3 = ( x + 1 ) 3 54 ( x + 1 ) + ( 54 3 54 ) , let y = x + 1 = y 3 54 y + ( 54 3 54 ) \begin{aligned} x^3 + 3x^2 - 51x + 54\sqrt3 - 107 & = & (x+1)^3 - 54x - 108 + 54 \sqrt3 \\ & = & (x + 1)^3 - 54(x + 1) + (54 \sqrt3 - 54), \text{ let } y=x+1 \\ & = & y^3 - 54y + (54 \sqrt3 - 54) \\ \end{aligned}

We want to solve the equation via trigonometric equations. Recall the triple angle formula cos ( 3 Θ ) = 4 cos 3 ( Θ ) 3 cos ( Θ ) \cos (3 \Theta) = 4 \cos^3 ( \Theta) - 3 \cos (\Theta ) , so we must have another substitution with A > 0 A>0 , y = A cos ( Θ ) y = A \cos (\Theta ) such that the ratio coefficient of cos 3 ( Θ ) \cos^3 (\Theta) to cos ( Θ ) \cos (\Theta) for y 3 y^3 and 54 y 54y is 4 : 3 4:3 after substitution.

y 3 : 54 y = 4 : 3 A 3 : 54 A = 4 : 3 A 3 54 A = 4 3 A = 72 \begin{aligned} y^3 : 54y & = & 4 : 3 \\ A^3 : 54A & = & 4 : 3 \\ \frac {A^3}{54A} & = & \frac {4}{3} \\ A & = & \sqrt{72} \\ \end{aligned}

Thus the substitution y = 72 cos ( Θ ) y = \sqrt{72} \cos ( \Theta )

72 ( 72 cos 3 ( Θ ) 54 cos ( Θ ) ) + ( 54 3 54 ) = 0 72 18 ( 4 cos 3 ( Θ ) 3 cos ( Θ ) ) = 54 54 3 72 cos ( 3 Θ ) = ( 3 3 3 ) cos ( 3 Θ ) = 3 3 3 72 = 3 1 2 2 \begin{aligned} \sqrt{72} \cdot (72 \cos^3 (\Theta) - 54 \cos (\Theta) ) +(54 \sqrt3 - 54) & = & 0 \\ \sqrt{72} \cdot 18 \cdot (4 \cos^3 (\Theta) - 3 \cos (\Theta) ) & = & 54 - 54 \sqrt 3 \\ \sqrt{72} \cdot \cos (3 \Theta) & = & (3 - 3 \sqrt 3) \\ \cos (3 \Theta) & = & \frac {3 - 3 \sqrt 3 }{\sqrt {72}} \\ & = & - \frac {\sqrt{3} - 1}{2 \sqrt2 } \\ \end{aligned}

With the double angle formula cos ( 2 ϕ ) = 1 2 sin 2 ( ϕ ) \cos ( 2 \phi ) = 1 - 2 \sin^2 ( \phi ) ,

1 2 sin 2 ( 1 5 ) = cos ( 3 0 ) 1 2 sin 2 ( 1 5 ) = 3 2 sin ( 1 5 ) = 1 3 2 2 cos ( 7 5 ) = 4 2 3 2 2 = 1 2 + ( 3 ) 2 2 1 3 2 2 = 3 1 2 2 cos ( 10 5 ) = 3 1 2 2 cos ( 10 5 ) , cos ( 36 0 10 5 ) , cos ( 36 0 + 10 5 ) = 3 1 2 2 cos ( 10 5 ) , cos ( 25 5 ) , cos ( 46 5 ) = 3 1 2 2 \begin{aligned} 1 - 2 \sin^2 ( 15^\circ) & = & \cos (30^\circ ) \\ 1 - 2 \sin^2 ( 15^\circ) & = & \frac {\sqrt 3}{2} \\ \sin ( 15^\circ) & = & \sqrt{ \frac {1 - \frac {\sqrt 3}{2} }{2} } \\ \cos ( 75^\circ) & = & \frac {\sqrt{4 - 2 \sqrt3 }}{2 \sqrt2} \\ & = & \frac {\sqrt{1^2 + (\sqrt 3)^2 - 2 \cdot 1 \cdot \sqrt3 }}{2 \sqrt2} \\ & = & \frac {\sqrt3 - 1}{2 \sqrt2} \\ \cos ( 105^\circ) & = & - \frac {\sqrt3 - 1}{2 \sqrt2} \\ \cos ( 105^\circ), \cos ( 360^\circ - 105^\circ), \cos ( 360^\circ + 105^\circ) & = & - \frac {\sqrt3 - 1}{2 \sqrt2} \\ \cos ( 105^\circ), \cos ( 255^\circ), \cos ( 465^\circ) & = & - \frac {\sqrt3 - 1}{2 \sqrt2} \\ \end{aligned}

So the 3 3 smallest positive values of 3 Θ 3 \Theta is 10 5 , 25 5 , 46 5 105^\circ, 255^\circ, 465^\circ , equivalently Θ = 3 5 , 8 5 , 15 5 \Theta = 35^\circ, 85^\circ, 155^\circ

Because we want the angles to be positive acute angles, we change the last angle to 18 0 15 5 = 2 5 180^\circ - 155^\circ = 25^\circ

y = 72 cos ( 3 5 ) , 72 cos ( 8 5 ) , 72 cos ( 2 5 ) = 6 2 cos ( 3 5 ) , 6 2 cos ( 8 5 ) , 6 2 cos ( 2 5 ) x + 1 = 6 2 cos ( 3 5 ) , 6 2 cos ( 8 5 ) , 6 2 cos ( 2 5 ) x = 6 2 cos ( 3 5 ) 1 , 6 2 cos ( 8 5 ) 1 , 6 2 cos ( 2 5 ) 1 \begin{aligned} y & = & \sqrt{72} \cos (35^\circ), \sqrt{72} \cos (85^\circ), -\sqrt{72} \cos (25^\circ) \\ & = & 6\sqrt2 \cos (35^\circ), 6\sqrt2 \cos (85^\circ), -6\sqrt2 \cos (25^\circ) \\ x + 1 & = & 6\sqrt2 \cos (35^\circ), 6\sqrt2 \cos (85^\circ), -6\sqrt2 \cos (25^\circ) \\ x & = & 6\sqrt2 \cos (35^\circ) - 1, 6\sqrt2 \cos (85^\circ) - 1, -6\sqrt2 \cos (25^\circ) - 1\\ \end{aligned}

Hence, a = 6 , b = 2 , c = 1 , α = 25 , β = 35 , θ = 85 α + β + θ 1 a + b + c = 16 a = 6, b = 2, c = 1, \alpha = 25, \beta = 35, \theta= 85 \Rightarrow \frac { \alpha + \beta + \theta - 1}{a+b+c} = \boxed{16}

How long does it take to think of this kind of a solution? (It's amazing, that's why I was wondering)

Arvind Ranganathan - 7 years, 1 month ago

Log in to reply

About 15 minutes. Relevant .

Pi Han Goh - 7 years, 1 month ago

Very nice solution, shorter than mine.

Alan Enrique Ontiveros Salazar - 7 years, 1 month ago

Let's make the substitution x = y 1 x=y-1 to delete the x 2 x^{2} coefficient: ( y 1 ) 3 + 3 ( y 1 ) 2 51 ( y 1 ) + 54 3 107 = 0 (y-1)^{3}+3(y-1)^{2}-51(y-1)+54\sqrt{3}-107=0 y 3 54 y + 54 3 54 = 0 y^{3}-54y+54\sqrt{3}-54=0

Now, consider the identity ( u + v ) 3 3 u v ( u + v ) ( u 3 + v 3 ) = 0 (u+v)^{3}-3uv(u+v)-(u^{3}+v^{3})=0 and make it coincide with the equation: y = u + v y=u+v 3 u v = 54 u v = 18 -3uv=-54 \leftrightarrow uv=18 ( u 3 + v 3 ) = 54 3 54 u 3 + v 3 = 54 54 3 -(u^{3}+v^{3})=54\sqrt{3}-54 \leftrightarrow u^{3}+v^{3}=54-54\sqrt{3}

And cube both sides of the second equation: u v = 18 ( u ) 3 ( v ) 3 = 5832 uv=18 \leftrightarrow (u)^{3}(v)^{3}=5832

Observe that the second and the third equation matches, by Vieta's formula, with a second-degree equation with roots u 3 u^{3} and v 3 v^{3} . So, let z 1 = u 3 z_{1}=u^{3} and z 2 = v 3 z_{2}=v^{3} : z 2 + ( 54 3 54 ) z + 5832 = 0 z^{2}+(54\sqrt{3}-54)z+5832=0 .

Use the quadratic formula to solve for z 1 , 2 z_{1,2} : z 1 , 2 = 27 27 3 ± i ( 27 3 + 27 ) z_{1,2}=27-27\sqrt{3}\pm i(27\sqrt{3}+27) Where i = 1 i=\sqrt{-1} is the imaginary unit.

Now, let's express both values of z z in polar form, but in this case the modulus R R and the argument δ \delta aren't very evident, so let's compute them: R = ( 27 27 3 ) 2 + ( 27 3 27 ) 2 R=\sqrt{(27-27\sqrt{3})^{2}+(27\sqrt{3}-27)^{2}} R = 54 2 R=54\sqrt{2} tan δ = 27 3 + 27 27 27 3 \tan \delta=\dfrac{27\sqrt{3}+27}{27-27\sqrt{3}} tan δ = ( 2 + 3 ) \tan \delta=-(2+\sqrt{3}) We're lucky because we can compute exactly δ \delta : δ = 7 π 12 \delta=\dfrac{7\pi}{12}

Now, express z 1 , 2 z_{1,2} in polar form: z 1 , 2 = R e i ( δ + 2 π k ) z_{1,2}=Re^{i(\delta+2\pi k)} z 1 , 2 = 54 2 e ± π i 12 ( 7 + 24 k ) z_{1,2}=54\sqrt{2}e^{\pm\dfrac{\pi i}{12}(7+24k)}

And substitute back for u u and v v : u = 54 2 e π i 12 ( 7 + 24 k ) 3 u=\sqrt[3]{54\sqrt{2}e^{\dfrac{\pi i}{12}(7+24k)}} u = 3 2 e π i 36 ( 7 + 24 k ) u=3\sqrt{2}e^{\dfrac{\pi i}{36}(7+24k)} v = 54 2 e π i 12 ( 7 + 24 k ) 3 v=\sqrt[3]{54\sqrt{2}e^{-\dfrac{\pi i}{12}(7+24k)}} v = 3 2 e π i 36 ( 7 + 24 k ) v=3\sqrt{2}e^{-\dfrac{\pi i}{36}(7+24k)} And express now in rectangular form and convert radians to degrees: u = 3 2 [ cos ( 5 ° ( 7 + 24 k ) ) + i sin ( 5 ° ( 7 + 24 k ) ) ] u=3\sqrt{2}[\cos(5°(7+24k))+i \sin(5°(7+24k))] v = 3 2 [ cos ( 5 ° ( 7 + 24 k ) ) i sin ( 5 ° ( 7 + 24 k ) ) ] v=3\sqrt{2}[\cos(5°(7+24k))-i \sin(5°(7+24k))] For k = 0 , 1 , 2 k={0,1,2} .

Now, remember that y = u + v y=u+v and x = y 1 x=y-1 , so let's compute for the three values of k k .

For k = 0 k=0 : u = 3 2 [ cos ( 35 ° ) + i sin ( 35 ° ) ] u=3\sqrt{2}[\cos(35°)+i \sin(35°)] v = 3 2 [ cos ( 35 ° ) i sin ( 35 ° ) ] v=3\sqrt{2}[\cos(35°)-i \sin(35°)] y = 3 2 [ cos ( 35 ° ) + i sin ( 35 ° ) ] + 3 2 [ cos ( 35 ° ) i sin ( 35 ° ) ] y=3\sqrt{2}[\cos(35°)+i \sin(35°)]+3\sqrt{2}[\cos(35°)-i \sin(35°)] y = 6 2 cos ( 35 ° ) y=6\sqrt{2}\cos(35°) x = 6 2 cos ( 35 ° ) 1 \boxed{x=6\sqrt{2}\cos(35°)-1}

For k = 1 k=1 : u = 3 2 [ cos ( 155 ° ) + i sin ( 155 ° ) ] u = 3 2 [ cos ( 25 ° ) + i sin ( 25 ° ) ] u=3\sqrt{2}[\cos(155°)+i \sin(155°)] \leftrightarrow u=3\sqrt{2}[-\cos(25°)+i \sin(25°)] v = 3 2 [ cos ( 155 ° ) i sin ( 155 ° ) ] u = 3 2 [ cos ( 25 ° ) i sin ( 25 ° ) ] v=3\sqrt{2}[\cos(155°)-i \sin(155°)] \leftrightarrow u=3\sqrt{2}[-\cos(25°)-i \sin(25°)] y = 3 2 [ cos ( 25 ° ) + i sin ( 25 ° ) ] + 3 2 [ cos ( 25 ° ) i sin ( 25 ° ) ] y=3\sqrt{2}[-\cos(25°)+i \sin(25°)]+3\sqrt{2}[-\cos(25°)-i \sin(25°)] y = 6 2 cos ( 25 ° ) y=-6\sqrt{2}\cos(25°) x = 6 2 cos ( 25 ° ) 1 \boxed{x=-6\sqrt{2}\cos(25°)-1}

For k = 2 k=2 : u = 3 2 [ cos ( 275 ° ) + i sin ( 275 ° ) ] u = 3 2 [ cos ( 85 ° ) i sin ( 85 ° ) ] u=3\sqrt{2}[\cos(275°)+i \sin(275°)] \leftrightarrow u=3\sqrt{2}[\cos(85°)-i \sin(85°)] v = 3 2 [ cos ( 275 ° ) i sin ( 275 ° ) ] u = 3 2 [ cos ( 85 ° ) + i sin ( 85 ° ) ] v=3\sqrt{2}[\cos(275°)-i \sin(275°)] \leftrightarrow u=3\sqrt{2}[\cos(85°)+i \sin(85°)] y = 3 2 [ cos ( 85 ° ) i sin ( 85 ° ) ] + 3 2 [ cos ( 85 ° ) + i sin ( 85 ° ) ] y=3\sqrt{2}[\cos(85°)-i \sin(85°)]+3\sqrt{2}[\cos(85°)+i \sin(85°)] y = 6 2 cos ( 85 ° ) y=6\sqrt{2}\cos(85°) x = 6 2 cos ( 85 ° ) 1 \boxed{x=6\sqrt{2}\cos(85°)-1}

Now, order the three solutions for x x : x 1 = 6 2 cos ( 25 ° ) 1 x_{1}=-6\sqrt{2}\cos(25°)-1 x 2 = 6 2 cos ( 85 ° ) 1 x_{2}=6\sqrt{2}\cos(85°)-1 x 3 = 6 2 cos ( 35 ° ) 1 x_{3}=6\sqrt{2}\cos(35°)-1

So, α = 25 \alpha=25 , β = 85 \beta=85 , θ = 35 \theta=35 , a = 6 a=6 , b = 2 b=2 , c = 1 c=1 and α + β + θ 1 a + b + c = 144 9 = 16 \dfrac{\alpha+\beta+\theta-1}{a+b+c}=\dfrac{144}{9}=\boxed{16} .

Lu Chee Ket
Aug 27, 2014

With f(x) = x^3 + 3 x^2 - 51 x + 54 sqrt(3) - 107,

Let x = y + k,

f(k) = k^3 + 3 k^2 - 51 k + 54 sqrt(3) - 107

f'(x)/ 1! = 3 k^2 + 6 k - 51

f''(x)/ 2! = (6 k + 6)/ 2 = 3 k + 3

f'''(x)/ 3! = 6/ 6 = 1

With f''(x)/ 2! = 0, k = -1,

y^3 - 54 y + 54 [sqrt(3) - 1] = 0 which can apply cubic formula. f^n (x)/ n! can minimize mistake and able to allow computer to do.

Applying sqrt[4 - 2 sqrt(3)] = sqrt(3) - 1,

x = -3 {cbrt[sqrt(3) - 1 - j (sqrt(3) + 1)] + cbrt[sqrt(3) - 1 + j (sqrt(3) + 1)] - 1;

|sqrt(3) - 1 - j (sqrt(3) + 1)| = |sqrt(3) - 1 + j (sqrt(3) + 1)| = 2 sqrt(2);

Arg[sqrt(3) - 1 - j (sqrt(3) + 1)] = - 75 deg while Arg[sqrt(3) - 1 + j (sqrt(3) + 1)] = 75 deg;

Finally,

x1 = - 6 sqrt(2) Cos 25 deg - 1

x2 = 6 sqrt(2) Cos 85 deg - 1

x3 = 6 sqrt(2) Cos 35 deg - 1

a = 6, b = 2 and c = 1.

(A + B + T - 1)/ (a + b + c) = (25 + 85 + 35 - 1)/ (6 + 2 + 1) = 144/ 9 = 16

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...