A strange equation

Algebra Level 4

Suppose a a and b b are positive numbers satisfying 1 a 1 b = 1 a + b \dfrac {1}{a} - \dfrac {1}{b} = \dfrac {1}{a+b} . Determine the value of a 6 b 6 + b 6 a 6 \dfrac {a^6}{b^6} + \dfrac {b^6} {a^6} .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arron Kau Staff
May 13, 2014

From the equation 1 a 1 b = 1 a + b \frac {1}{a} - \frac {1}{b} = \frac {1}{a+b} , multiplying throughout by a + b a+b gives a + b a a + b b = 1 \frac {a+b} {a} - \frac {a+b}{b} = 1 , and so b a a b = 1 \frac {b}{a} - \frac {a}{b} = 1 . This gives ( b a + a b ) 2 = ( b a a b ) 2 + 4 × b a × a b = 1 + 4 = 5 \left( \frac {b}{a} + \frac {a}{b}\right)^2 = \left(\frac {b}{a} - \frac {a}{b}\right)^2 + 4 \times \frac {b}{a} \times \frac {a}{b} = 1 + 4 = 5 . Since a a and b b are positive, we take the positive square root to obtain b a + a b = 5 \frac {b}{a} + \frac {a}{b} = \sqrt{5} .

Taking the third power, we get

5 5 = ( b a + a b ) 3 = b 3 a 3 + 3 b a + 3 a b + a 3 b 3 , 5 \sqrt{5} = \left(\frac {b}{a} + \frac {a}{b}\right)^3 = \frac {b^3}{a^3} + 3 \frac {b}{a} + 3 \frac {a}{b} + \frac {a^3} {b^3},

implying a 3 b 3 + a 3 b 3 = 2 5 \frac {a^3}{b^3} + \frac {a^3} {b^3} = 2 \sqrt{5} . Finally, squaring gives 20 = ( a 3 b 3 + b 3 a 3 ) 2 = a 6 b 6 + 2 + b 6 a 6 20 = \left(\frac {a^3}{b^3} + \frac {b^3} {a^3} \right)^2 = \frac {a^6}{b^6} + 2 + \frac {b^6}{a^6} , so a 6 b 6 + b 6 a 6 = 18 \frac {a^6}{b^6} + \frac {b^6} {a^6} = 18 .

Aditya Dhawan
Apr 22, 2016

1 a 1 b = 1 a + b ( a 0 , b 0 , a + b 0 ) a + b a a + b b = 1 ( m u l t i p l y i n g b y a + b ) 1 + b a { a b + 1 } = 1 b a a b = 1 ( b a a b ) 3 = 1 ( b a ) 3 ( a b ) 3 3 ( b a a b ) = 1 ( b a ) 3 ( a b ) 3 = 4 [ ( b a ) 3 ( a b ) 3 ] 2 = 16 ( b a ) 6 + ( a b ) 6 2 = 16 ( a b ) 6 + ( b a ) 6 = 18 \frac { 1 }{ a } -\frac { 1 }{ b } =\frac { 1 }{ a+b } \left( a\neq 0,b\neq 0,a+b\neq 0 \right) \\ \frac { a+b }{ a } -\frac { a+b }{ b } =1\quad (multiplying\quad by\quad a+b)\\ \Longrightarrow \quad 1+\frac { b }{ a } -\left\{ \frac { a }{ b } +1 \right\} =1\\ \Longrightarrow \quad \frac { b }{ a } -\frac { a }{ b } =1\\ \Longrightarrow { \left( \frac { b }{ a } -\frac { a }{ b } \right) }^{ 3 }=1\Longrightarrow \left( \frac { b }{ a } \right) ^{ 3 }-\quad { \left( \frac { a }{ b } \right) }^{ 3 }-3\left( \frac { b }{ a } -\frac { a }{ b } \right) =1\Longrightarrow \left( \frac { b }{ a } \right) ^{ 3 }-\quad { \left( \frac { a }{ b } \right) }^{ 3 }=4\\ \therefore { \left[ \left( \frac { b }{ a } \right) ^{ 3 }-\quad { \left( \frac { a }{ b } \right) }^{ 3 } \right] }^{ 2 }=16\Longrightarrow \left( \frac { b }{ a } \right) ^{ 6 }+\quad { \left( \frac { a }{ b } \right) }^{ 6 }-\quad 2\quad =\quad 16\\ \therefore \boxed { \left( \frac { a }{ b } \right) ^{ 6 }+\quad { \left( \frac { b }{ a } \right) }^{ 6 }=\quad 18 }

Moderator note:

Clearly written and explained.

I did the same ......

Aditya Kumar - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...