A strange value

Geometry Level 3

In a triangle A B C \triangle ABC , A C = 6 \overline{AC}=6 , A B = 9 \overline{AB}=9 and C = 15 ° \angle C=15° . Then, the exact value of B C \overline{BC} can be expressed, in its simplest form, as a b + a c c + a d + a \frac {a \sqrt {b} + a \sqrt {c}}{c}+a \sqrt {d+\sqrt {a}} , where a a , b b , c c and d d are positive integers. Find a + b + c + d a+b+c+d .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tunk-Fey Ariawan
Mar 19, 2014

First, we calculate cos 1 5 \cos 15^\circ . cos 1 5 = cos ( 6 0 4 5 ) = cos 6 0 cos 4 5 + sin 6 0 sin 4 5 = 1 2 1 2 2 + 1 2 3 1 2 2 = 1 4 2 ( 1 + 3 ) . \begin{aligned} \cos 15^\circ&=\cos(60^\circ-45^\circ)\\ &=\cos60^\circ\cos45^\circ+\sin60^\circ\sin45^\circ\\ &=\frac{1}{2}\cdot\frac{1}{2}\sqrt{2}+\frac{1}{2}\sqrt{3}\cdot\frac{1}{2}\sqrt{2}\\ &=\frac{1}{4}\sqrt{2}(1+\sqrt{3}). \end{aligned} Let B C = x \overrightarrow{BC}=x , then B C \overrightarrow{BC} can be calculated by using cosine formula. 9 2 = x 2 + 6 2 2 x ( 6 ) cos 1 5 81 = x 2 + 36 12 x 1 4 2 ( 1 + 3 ) x 2 3 2 ( 1 + 3 ) x 45 = 0 x 1 , 2 = 3 2 ( 1 + 3 ) ± ( 3 2 ( 1 + 3 ) ) 2 4 ( 1 ) ( 45 ) 2 = 3 2 + 3 6 ± 6 7 + 3 2 = 3 6 + 3 2 2 ± 3 7 + 3 \begin{aligned} 9^2&=x^2+6^2-2x(6)\cos 15^\circ\\ 81&=x^2+36-12x\cdot\frac{1}{4}\sqrt{2}(1+\sqrt{3})\\ x^2-3\sqrt{2}(1+\sqrt{3})x-45&=0\\ x_{1,2}&=\frac{3\sqrt{2}(1+\sqrt{3})\pm\sqrt{(3\sqrt{2}(1+\sqrt{3}))^2-4(1)(-45)}}{2}\\ &=\frac{3\sqrt{2}+3\sqrt{6}\pm6\sqrt{7+\sqrt{3}}}{2}\\ &=\frac{3\sqrt{6}+3\sqrt{2}}{2}\pm3\sqrt{7+\sqrt{3}} \end{aligned} We obtain a = 3 a=3 , b = 2 b=2 , c = 6 c=6 , and d = 7 d=7 . Therefore, a + b + c + d = 3 + 2 + 6 + 7 = 18 a+b+c+d=3+2+6+7=\boxed{18} .

Thanks for the links of other problems.

Prakhar Gupta - 7 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...