A sum of coefficients.

Algebra Level 4

If sin 2 A = x \sin ^{ 2 }{ A } = x , then

sin A × sin 2 A × sin 3 A × sin 4 A \sin { A } \times \sin { 2A } \times \sin { 3A } \times \sin { 4A }

is a polynomial in x x , the sum of whose coefficients is:

4 None -1 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let f ( x ) = sin A × sin 2 A × sin 3 A × sin 4 A f(x)=\sin { A } \times \sin { 2A } \times \sin { 3A } \times \sin { 4A }

Then the required sum is simply the value of f ( 1 ) f(1) . Now, if x = 1 sin 2 A = 1 sin 2 A = 0 x=1\Rightarrow \sin ^{ 2 }{ A }=1 \Rightarrow \sin {2A}=0

f ( 1 ) = 0 \Rightarrow \boxed{ f(1)=0}

Thanks for the solution.up voted. I am posting my long solution just as a poor alternative.

Niranjan Khanderia - 2 years, 10 months ago

S i n A = S i n A S i n 2 A = 2 S i n A ( C o s A ) S i n 3 A = S i n A ( 3 4 S i n 2 A ) = S i n A ( 3 4 x ) S i n 4 A = 4 S i n A ( C o s 3 A S i n 2 C o s A ) = 4 S i n A ( C o s A ) ( 1 x x ) S i n A S i n 2 A S i n 3 A S i n 4 A = 8 S i n 4 x ( C o s 2 A ) ( 3 4 x ) ( 1 2 x ) = 8 x 2 ( 1 x ) ( 3 4 x ) ( 1 2 x ) = 8 x 2 ( 8 x 3 + 18 x 2 13 x + 3 ) 8 + 18 13 + 3 = 0. \begin{aligned}\\ SinA&= SinA\\ Sin2A&= 2SinA(CosA)\\ Sin3A&= SinA(3-4Sin^2A)=SinA(3-4x)\\ Sin4A&= 4SinA(Cos^3A-Sin^2*CosA)=4SinA(CosA)(1-x-x)\\ ~~~ \\ ~~~~~\\ \therefore~~SinA*Sin2A*Sin3A*Sin4A&=8*Sin^4x(Cos^2A)(3-4x)(1-2x)\\ &=8*x^2(1-x)(3-4x)(1-2x)\\ &=8x^2(-8x^3+18x^2-13x+3)\\ \end{aligned} \\ ~~~ \\ ~~~~~\\ -8+18-13+3=\huge \color{#D61F06}{0}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...