Evaluate
1 + 3 + 5 + 7 + 9 + 1 1 + 1 3 + 1 5 + 1 7 + 1 9 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice approach, realizing that the pairs of numbers taken from the end all add up to 20.
keke mana ni
[(l+1)/2]^2 where 'l' is the last odd number in the sequence
1+3+5+7+9+11+13+15+17+19 =(1+19)+(3+17)+(5+15)+(7+13)+(9+11) =20+20+20+20+20 =100
{20 x 10} = 200 as there are 10 numbers so the answer will be 200/2 = 100
great job
As somas dos elementos das extremidades, ou seja, os elementos os quais os 5 primeiros números iniciais se relacionam, ambos correpsondem a uma soma de resultado igual a 20. Multiplicado 20 pelas cinco pares que podem ser feitos, encontramos o valor final de 100.
1+19=3+17=5+15=7+13=9+11=20 so 20*5=100
great bro
1+3+5+7+9+11+13+15+17+19=100
Também poderia ser calculado utilizando a formula da Soma de uma PA
Sn = a11+an . n / 2
S10= (1 + 19) . 2 / 2 = 100
1st and 10th number total is 20 which is applicable to 2nd to 9th,3rd to 8th and so on so 20 x 5= 100
9 + 13 = 22 22/2 = 11
(9 * 11) + 1 = 100
100
any increment sequence starts with {a} and has a step {d} can be written as
a , a+d , a+2d , a+3d , a+4d ,
for our sequence here
to get the i-th element we follow {element (i)= 1 + (i-1)
2 }
and its summation follow { S(i)= i
1+ ( ( i )* (i-1) / 2) * 2 ) } putting i =10 , S(10)=10 + 90 =100
Problem Loading...
Note Loading...
Set Loading...
(1+19)+(3+17)+...+(9+11)=20x5=100