A Summation?

Algebra Level pending

Numbers (not necessarily real) x x , y y , and z z satisfy the system of equations:

{ x + y + z = 1 x 2 + y 2 + z 2 = 2 x 3 + y 3 + z 3 = 3 \begin{cases} x+y+z=1 \\ x^2+y^2+z^2=2 \\ x^3+y^3+z^3=3 \end{cases}

Find the value of x 5 + y 5 + z 5 x^5+y^5+z^5 .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 28, 2020

Let P n = x n + y n + z n P_n = x^n+y^n+z^n , where n n is a positive integer, and S 1 = x + y + z = 1 S_1 = x+y+z=1 , S 2 = x y + y z + z x S_2 = xy +yz+zx , and S 3 = x y z S_3 = xyz . Then by Newton's sums or identities , we have:

P 1 = S 1 = 1 P 2 = S 1 P 1 2 S 2 = 2 S 2 = 1 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 2 + 1 2 + 3 S 3 = 3 S 3 = 1 6 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 = 3 + 1 + 1 6 = 25 6 P 5 = S 1 P 4 S 2 P 3 + S 3 P 2 = 25 6 + 3 2 + 1 3 = 6 \begin{aligned} P_1 & = S_1 = 1 \\ P_2 & = S_1 P_1 - 2S_2 = 2 & \small \blue{\implies S_2 = - \frac 12} \\ P_3 & = S_1 P_2 - S_2 P_1 + 3S_3 = 2 + \frac 12 + 3S_3 = 3 & \small \blue{\implies S_3 = \frac 16} \\ P_4 & = S_1 P_3 - S_2 P_2 + S_3P_1 = 3 + 1 + \frac 16 = \frac {25}6 \\ P_5 & = S_1 P_4 - S_2 P_3 + S_3P_2 = \frac {25}6 + \frac 32 + \frac 13 = \boxed 6 \end{aligned}

Wonderful solution Chew

Mohammed Imran - 1 year, 3 months ago

It is Newton-Girard identities right?

Mohammed Imran - 1 year, 3 months ago

Log in to reply

I suppose so. It is also called Newton's sums. Can you upvote the solution.

Chew-Seong Cheong - 1 year, 3 months ago

exactly how i would solve it

Nitin Kumar - 1 year, 3 months ago

Log in to reply

Good, can you upvote

Chew-Seong Cheong - 1 year, 3 months ago

Log in to reply

ok, i will do that

Nitin Kumar - 1 year, 3 months ago

From the first two equations we get

2 ( x y + y z + z x ) = ( x + y + z ) 2 ( x 2 + y 2 + z 2 ) = 1 2 = 1 2(xy+yz+zx)=(x+y+z)^2-(x^2+y^2+z^2)=1-2=-1 or

x y + y z + z x = 1 2 xy+yz+zx=-\dfrac{1}{2} .

Using the third equation we get

x y z = 1 3 [ x 3 + y 3 + z 3 ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) ] = 1 3 [ 3 1 × ( 2 + 1 2 ) = 1 6 xyz=\dfrac{1}{3}[x^3+y^3+z^3-(x+y+z)(x^2+y^2+z^2-xy-yz-zx)]=\dfrac{1}{3}[3-1\times {(2+\dfrac{1}{2})}=\dfrac{1}{6} .

Hence x , y , z x, y, z are the roots of the equation X 3 X 2 1 2 X 1 6 = 0 X^3-X^2-\dfrac{1}{2}X-\dfrac{1}{6}=0 . Hence

x 4 + y 4 + z 4 = x 3 + y 3 + z 3 + 1 2 ( x 2 + y 2 + z 2 ) + 1 6 ( x + y + z ) = 3 + 1 + 1 6 = 25 6 x^4+y^4+z^4=x^3+y^3+z^3+\dfrac{1}{2}(x^2+y^2+z^2)+\dfrac{1}{6}(x+y+z)=3+1+\dfrac{1}{6}=\dfrac{25}{6} ,

and

x 5 + y 5 + z 5 = x 4 + y 4 + z 4 + 1 2 ( x 3 + y 3 + z 3 ) + 1 6 ( x 2 + y 2 + z 2 ) = 25 6 + 3 2 + 1 3 = 6 x^5+y^5+z^5=x^4+y^4+z^4+\dfrac{1}{2}(x^3+y^3+z^3)+\dfrac{1}{6}(x^2+y^2+z^2)=\dfrac{25}{6}+\dfrac{3}{2}+\dfrac{1}{3}=\boxed 6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...