Does there exist distinct rational numbers x , y and z such that ( x − y ) 2 1 + ( y − z ) 2 1 + ( z − x ) 2 1 = 2 0 2 1 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
That is super nice!
If you had instead taken ( y − x 1 + y − z 1 + z − x 1 ) 2 on the left hand side, the expression that you got on right hand side would still have been there, but with some non-zero quantity added to it. Is this an independent case? If yes then shouldn't we prove this case seperately?
Suppose x , y , z ∈ Q , let a = x − y 1 , b = y − z 1 , c = z − x 1 , then a , b , c ∈ Q . Because a 1 + b 1 + c 1 = 0 , we can write c = − a + b a b So a 2 + b 2 + ( a + b ) 2 a 2 b 2 = 2 0 2 1
Setting s = a + b and p = a b this writes as s 2 − 2 p + s 2 p 2 = 2 0 2 1 or (multiplied by s 2 and rearranged):
p 2 − 2 p s 2 + s 4 − 2 0 2 1 s 2 = 0 Solving for p : p = s 2 ± s 2 0 2 1 Note that s cannot be 0, because p, a, and b would be 0 too. s p − s 2 = ± 2 0 2 1 Since the left hand side is rational and the right hand side is irrational, this is impossible. Conclusion: x, y, and z cannot all be rational.
This is a really great solution
Problem Loading...
Note Loading...
Set Loading...
Observe that since ( x − y 1 + y − z 1 + z − x 1 ) 2 = ( x − y ) 2 1 + ( y − z ) 2 1 + ( y − z ) 2 1 + 2 ( ( x − y ) ( y − z ) 1 + ( y − z ) ( z − x ) 1 + ( z − x ) ( x − y ) 1 ) = ( x − y ) 2 1 + ( y − z ) 2 1 + ( y − z ) 2 1 + 2 ( ( x − y ) ( y − z ) ( z − x ) ( z − x ) + ( x − y ) + ( z − x ) ( x − y ) 1 ) = ( x − y ) 2 1 + ( y − z ) 2 1 + ( y − z ) 2 1 + 2 ( ( x − y ) ( y − z ) ( z − x ) z − y + ( z − x ) ( x − y ) 1 ) = ( x − y ) 2 1 + ( y − z ) 2 1 + ( y − z ) 2 1 + 2 ( − ( x − y ) ( z − x ) 1 + ( z − x ) ( x − y ) 1 ) = ( x − y ) 2 1 + ( y − z ) 2 1 + ( y − z ) 2 1 thus, since 2021 is clearly not a square of a rational number, we're done. ■
Remark: This problem is adapted from 2014 Baltic Way.