A Surface Integral - 2

Calculus Level pending

Given a sphere of radius R = 5 R = 5 , centered at the origin, and a point r 0 = ( 0 , 1 , 2 ) \mathbf{r_0} = (0, 1, 2) inside it, calculate the surface integral,

1 4 π S ( r r 0 ) T ( r r 0 ) d S \displaystyle \dfrac{1}{4\pi} \int_S (\mathbf{r}- \mathbf{r_0})^T (\mathbf{r}- \mathbf{r_0}) dS

Here r \mathbf{r} is the position vector of a point on the surface of the sphere.

750 900 625 125

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
May 27, 2020

Problem solved in spherical coordinates. Simplifications are tedious.

Problem treated in spherical coordinates:

x = R sin θ cos ϕ x = R \sin{\theta}\cos{\phi} y = R sin θ sin ϕ y = R \sin{\theta}\sin{\phi} z = R cos θ z = R\cos{\theta}

r = [ x y z ] ; r o = [ 0 1 2 ] \vec{r} =\left[\begin{matrix} x \\ y \\ z \end{matrix}\right] \ ; \ \vec{r}_o =\left[\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}\right]

The expression:

I = ( r r o ) T ( r r o ) = 25 cos ( ϕ ) 2 sin ( θ ) 2 + ( 5 sin ( ϕ ) sin ( θ ) 1 ) 2 + ( 5 cos ( θ ) 2 ) 2 I=\left(\vec{r} - \vec{r}_o\right)^T\left(\vec{r} - \vec{r}_o\right) = 25\,{\cos\left(\phi\right)}^2\,{\sin\left(\theta\right)}^2+{\left(5\,\sin\left(\phi\right)\,\sin\left(\theta\right)-1\right)}^2+{\left(5\,\cos\left(\theta\right)-2\right)}^2

This is a scalar function. The surface integral is:

0 2 π 0 π I ( R 2 sin θ d θ d ϕ ) = 0 2 π 0 π 25 sin ( θ ) ( 25 cos ( ϕ ) 2 sin ( θ ) 2 + ( 5 sin ( ϕ ) sin ( θ ) 1 ) 2 + ( 5 cos ( θ ) 2 ) 2 ) d θ d ϕ \int_{0}^{2 \pi} \int_{0}^{\pi} I \left(R^2 \sin{\theta} \ d\theta \ d\phi \right) = \int_{0}^{2 \pi} \int_{0}^{\pi} 25\,\sin\left(\theta\right)\,\left(25\,{\cos\left(\phi\right)}^2\,{\sin\left(\theta\right)}^2+{\left(5\,\sin\left(\phi\right)\,\sin\left(\theta\right)-1\right)}^2+{\left(5\,\cos\left(\theta\right)-2\right)}^2\right)\ d\theta \ d\phi

Further simplifications left out as each term is expanded and the integral is split further as limits of integration are constant. The integral evaluates to 3000 π \boxed{3000 \pi} . The answer is, therefore, 750 \boxed{750} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...