A Surprising Symmetry

Geometry Level 4

b c sin ( B C 2 ) \large \dfrac {b-c}{\sin (\frac {\angle B-\angle C}{2})}

In acute A B C \triangle ABC , the side lengths across from angles A , B , C A,B,C are denoted a , b , c a,b,c respectively. It is given that a = 10 a=10 and the circumradius of A B C \triangle ABC is 13.

If the absolute value of the expression above can be written as n \sqrt {n} , then find n n .


The answer is 104.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
May 1, 2016

Relevant wiki: Solving Triangles - Problem Solving - Medium

Let the required expression be P \mathfrak{P} . Use b = 2 R sin B , c = 2 R sin C \small{\color{#D61F06}{b=2R\sin B, c=2R \sin C}} and then sin B sin C = 2 sin ( B C 2 ) cos ( B + C 2 ) sin ( A 2 ) \small{\color{#3D99F6}{\sin B-\sin C=2\sin \left(\dfrac{B-C}{2}\right)\underbrace{\cos\left(\dfrac{B+C}{2}\right)}_{\large{\sin}\left(\frac{A}{2}\right)}}}

P = 4 R ( sin ( B C 2 ) sin ( A 2 ) ) sin ( B C 2 ) \mathfrak P=\dfrac{4R\left(\cancel{\sin\left(\dfrac{B-C}{2}\right)}\sin\left(\dfrac{A}{2}\right)\right)}{\cancel{\sin\left(\dfrac{B-C}{2}\right)}}

sin ( A 2 ) = 1 cos A 2 = 1 1 sin 2 A 2 = 1 1 a 2 4 R 2 2 \boxed{\color{#007fff}{\small{\begin{aligned}\sin\left(\dfrac{A}{2}\right)=\sqrt{\dfrac{1-\color{teal}{\cos A}}{2}}=&\sqrt{\dfrac{1-\color{teal}{\sqrt{1-\color{#20A900}{\sin^2A}}}}{2}}\\&=\sqrt{\dfrac{1-\color{teal}{\sqrt{1-\color{#20A900}{\dfrac{a^2}{4R^2}}}}}{2}} \end{aligned}}}}

Thus,

P = 4 R ( 1 1 a 2 4 R 2 2 ) \large\mathfrak P=4R\left( \sqrt{\dfrac{1-\color{teal}{\sqrt{1-\color{#20A900}{\dfrac{a^2}{4R^2}}}}}{2}}\right)

Substituting a = 10 , R = 13 a=10, R=13 , we get:

P = 2 26 = 104 \Large \mathfrak P=2\sqrt{26}=\sqrt{104}

n = 104 \huge \therefore n=\boxed{104}

Same solution

Aakash Khandelwal - 5 years, 1 month ago

Log in to reply

Great.... ¨ \ddot\smile

Rishabh Jain - 5 years, 1 month ago

What exactly was the symmetry you were talking about? @Xuming Liang

A Former Brilliant Member - 5 years, 1 month ago

Log in to reply

Same curiosity

Aakash Khandelwal - 5 years, 1 month ago

Nice solution!

Harsh Shrivastava - 5 years, 1 month ago

Log in to reply

T H A N K S ¨ THANKS~ \ddot\smile

Rishabh Jain - 5 years, 1 month ago

same solution

A Former Brilliant Member - 4 years, 7 months ago

I don't quite understand why cos((B-C/2) = sin(A/2)

Tristan Gallent - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...